

Simply supported beam \mathcal{AB} is subjected to a linearly varying load as shown. Determine the slope and deflection of the beam at 1.8 ft to the right of support \mathcal{A} , knowing that for this beam

$$E/=10,600 \times 10^6 \text{ lb-in.}^2$$

Cantilevered beam \mathcal{AB} is 12 ft long and consists of two sections. It is subjected to a 10-kip end load. Determine the deflection of the beam at 4.2 ft to the right of support \mathcal{A} and at end \mathcal{B} knowing that

$$EI_{1} = 24,000 \times 10^{6} \text{ lb-in.}^{2}$$
 $EI_{2} = 9,600 \times 10^{6} \text{ lb-in.}^{2}$

Beam AB is subjected to a uniformly distributed 12-kN/m load and a concentrated 25-kN force. Determine the deflection of the beam at points $\mathcal L$ and $\mathcal D$, knowing that

$$E/ = 55 \times 10^6 \text{ N-m}^2$$

Beam $\it ABED$ is subjected to a uniformly distributed 16-kN/m load and a concentrated 72 kN-m moment. Determine the deflection of the beam midway between supports $\it B$ and $\it C$, knowing that

$$E/ = 60 \times 10^6 \text{ N-m}^2$$

The simply supported beam shown is subjected to the two uniform loads indicated. Determine the deflection of the beam at point $\mathcal E$ (7 ft to the right of $\mathcal A$) knowing that for this beam

$$E/ = 12.600 \times 10^6 \text{ lb-in.}^2$$

Beam ABC is subjected to a uniformly distributed 30-kip/ft load. Determine the reactions at supports A, B, and C.

Beam $\it ABC$ is subjected to the 30 kip-ft moment shown. Determine deflection at point $\it D$ knowing that

$$E/ = 560 \times 10^6 \text{ lb-in.}^2$$

Simply supported beam ABC is subjected to a uniformly distributed 15-kip/ft load and a concentrated 35-kip force as shown. Determine the reactions at A, B, and C.

$$E/ = 9,500 \times 10^6 \text{ lb-in.}^2$$

Superposition

Cantilevered beam \mathcal{AB} supports the loads shown. Determine the deflection at point \mathcal{B} knowing that for this beam

$$EI = 130 \times 10^6 \text{ N-m}^2$$

For the beam loaded and supported as shown, determine the deflection of point $\,{\cal B}\,$ knowing that

$$EI = 1150 \times 10^6 \text{ lb-in.}^2$$

Propped cantilevered beam $\,AB\,$ supports the loads shown. Determine the reaction at point $\,B\,$ knowing that for this beam

$$E/ = 60 \times 10^6 \text{ N-m}^2$$

Determine the deflection at point ${\cal E}$ for the beam shown.