

The state of stress at a point in a structural member is determined to be as shown. Using transformation equations, determine the normal and shearing stresses acting on plane a-a.

The state of stress at a point in a structural member is determined to be as shown. Using the appropriate equations, determine the maximum and minimum normal stresses, principal angle, and maximum in-plane shear stress at this point.

3)

A closed-end pressure vessel has an inside diameter of 1200 mm and a wall thickness of 20 mm. It is pressurized to an internal pressure of 5 MPa and has a centric compressive force of 600 kN applied as shown. The tank is welded together along a helix making an angle of 40° to the horizontal. Determine the normal and shearing stresses along the helix.

4)

For the state of plane stress shown, determine the range of angles $\boldsymbol{\theta}$ for which

Determine the magnitude of the shearing stress that can be sustained by this element so that the maximum principal stress does not exceed 24 ksi.

The uniform 3.5-in.-radius bracket shown is fixed to the ground at \mathcal{E} . Cable $\mathcal{E}\mathcal{D}$ has a tensile force of 4 kip produced by turnbuckle \mathcal{E} . Determine the principal stresses and the principal angle at point \mathcal{A} or \mathcal{B} . Click on the point you wish to consider.

The state of stress at a point in a structural member is determined to be as shown. Knowing that for this material ${\it E}$ = 200 GPa and ${\it V}$ = 0.3, use Mohr's circle to determine the principal strains and the principal angle associated with this state of stress.

The state of stress at a point in a structural member is as shown. Two strain gages are applied to the surface of the member. The orientation of gage ${\cal A}$ is as shown. Strain gage ${\cal B}$ is perpendicular to gage ${\cal A}$. Knowing that for this material ${\cal E}=10\times10^6$ psi and ${\cal V}=0.33$, use Mohr's circle to determine the strain in gages ${\cal A}$ and ${\cal B}$.

A street light with $\it E$ = 70 GPa and $\it V$ = 0.33 is subjected to a downward force ($\it F$) and a wind load ($\it H'$) as shown. At the location indicated, two strain gages are applied so that they measure the strain in the $\it y$ direction. Determine the loads $\it F$ and $\it H'$ knowing that $\it E_{\it A}$ = 350 $\it \mu$ and $\it E_{\it B}$ = -26 $\it \mu$.

The 340 \times 680-mm cantilevered beam shown is subjected to the loads indicated. Determine the principal stresses and the principal angle at point $\mathcal A$ or $\mathcal B$ or $\mathcal E$. Click on the point you wish to consider. Click the exit arrow to exit this quiz.