
CHAPTER 9 

Matroids and 

Skeletal Structures 

 

9.1   INTRODUCTION  

The theory of matroids, which was introduced by Whitney [249] in his pioneering 
paper as early as 1935, is concerned with the abstract properties of independence. 
He conceived a "matroid" as an abstract generalization of a matrix; hence some of 
the language, including the name of the theory, is based on that of linear algebra. 
At the same time he refers to matroids as generalized graphs, and uses some terms 
from graph theory. 

Matroids have received a great deal of attention from both the theoretical and the 
application points of view. Contributions have been made to its extension by 
Tutte, Rado, Welsh, Mirsky, Edmonds and many others; an excellent introduction 
is Welsh [243]. Matroids have been applied to various fields of engineering such 
as electrical networks by Minty [174], structural analysis by Kaveh [89,105] and 
rigidity of structures by Crapo [33] Recski [202], and Whiteley [248] among many 
other fields of science and engineering. The author´s interest in matroids has been 
motivated by the active presence of both matrices and graphs in the matrix 
analysis of structures, and the need for generalizing some of the existing concepts 
of graph theory, Refs. [93,94]. 

In this chapter, a matroid is defined using different but equivalent sets of axioms. 
Examples of matroids associated with graphs are included, due to the partial 
familiarity of structural analysts with the theory of graphs. The Greedy Algorithm 
developed by Edmonds [42] for selecting an optimal base of a matroid is 
described, and the problems encountered in the application of this algorithm in 
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structural mechanics are discussed. Methods are suggested to overcome the 
difficulties involved. 

 

9.2   AXIOM SYSTEMS FOR A MATROID 

A matroid may be defined in many different inter-related forms, several of which 
were described in Whitney´s original paper. Here the definitions in terms of the 
concepts of independence, bases, circuits and ranks are presented, and the proof of 
their equivalence may be found in Refs. [243,249]. 

Matroid theory postulates certain sets to be independent and develops a fruitful 
theory from certain axioms which it requires to hold for this collection of 
independent sets. 
 

9.2.1   DEFINITION IN TERMS OF INDEPENDENCE 

A matroid M is a set of elements S = {s1, s2, ..., sm} and a collection F  of subsets 
of S (called independent sets) such that:  

I1) ∅ ∈ F. 

I2) If X ∈ F  and Y ⊆ X, then Y ∈ F. 

I3) If X ∈ F  and Y ∈ F  with | X | = | Y | + 1, then there exists s ∈ X − Y such 
that  Y+s ∈ F. 

Here | X | and | Y | denote the cardinalities of the sets X and Y, respectively. 

For a matroid M = (S,F), those subsets of S  belonging to F are called independent, 
and those which do not belong to F, are known as dependent. A maximal 
independent subset of a matroid, is known as a base of M. 

9.2.2   DEFINITION IN TERMS OF BASES 

M(S,F) is a matroid if the collection of bases of M, denoted by B, satisfies the 
following conditions: 

B1) B ≠ ∅. 

B2) | B1 | = | B2 | for every B1, B2 ∈ B. 
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B3) If B1, B2 ∈ B and s1 ∈ B1, then there exists a s2 ∈ B2 such that (B1−s1+s2) 
∈B. 

A circuit of a matroid M is a minimal dependent set of S. 

9.2.3   DEFINITION IN TERMS OF CIRCUITS 

M(S,F) is a matroid if the collection of circuits of M, denoted by C, satisfies the 
following postulates: 

C1) No proper subset of a circuit is a circuit. 

C2) If C1 and C2 are distinct circuits of C and s ∈ C1 ∩ C2, then there exists a 
 circuit: 

 C3 of C  such that C3  ⊆ (C1 ∪ C2) − s. 

Corresponding to each subset Fi, a number r(Fi) ∈ Z is defined, which is known as 
the rank of Fi, as follows: 

 r(Fi) = Max {|X|: X ⊆ Fi , X∈F }. (9-1) 

9.2.4   DEFINITION IN TERMS OF RANK 

M(S,F ) forms a matroid if the following conditions hold: 

R1) The rank of the null subset is zero. 

R2) For a subset Fi and any element s not in Fi, r(Fi +s) = r(Fi) + k, (k = 0 or 1). 

R3) For s1, s2 not in Fi, if  r(Fi + s1) = r(Fi + s2) = r(Fi), then r(Fi +s1+s2) = r(Fi). 

The nullity of Fi is defined as n(Fi) = ⎪Fi⎪− r(Fi). Obviously, a subset is 
independent if its nullity is zero; otherwise it is dependent. An element s ∈ S is 
called dependent on Fi if r(Fi +s) = r(Fi); otherwise it is independent of Fi. The 
nullity of a base is zero, and that of a circuit is unity. 

Now it is obvious that knowledge of the bases, or circuits, or rank functions is 
sufficient to uniquely determine the corresponding matroid. Therefore, it is not 
surprising that there exist axiom systems for a matroid in terms of each of these 
concepts. One can also consider one of these axiom systems and prove the others 
as theorems. A knowledge of all the axiom systems, helps in constructing suitable 
matroids and employing the relevant properties efficiently. 
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Example 1:   Consider the following matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
=

10010
11001
54321         

A
 

over the field  of real numbers. The column set {1,2,3,4,5} of A and its 
independent subsets form a matroid M(A). The set of independent subsets of this 
matroid is obtained as I = {∅, {1}, {2}, {4}, {5}, {1,2}, {2,4}, {2,5}, {4,5}}, and 
the set of its circuits is C = {{3}, {1,4}, {1,2,5}, {2,4,5}}. 

Example 2:  Let S be the graph as shown in Figure 9.1. Consider a matroid M(S), 
formed on the members {m1,m2,m3,m4,m5} of S, with circuit set as: 

C ={{m3},{m1,m4},{m1,m2,m5},{m2,m4,m5}}. This matroid is the known as the 
cycle matroid of the graph S, as defined in the Section 9.3.4. 
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Fig. 9.1   A planar graph S. 

Now compare M(S) with M(A) in Example 1. It can be seen that, under bijection 
Ψ from {1,2,3,4,5} to {m1,m2,m3,m4,m5}  defined by Ψ(i) = mi, a set X is a circuit 
in M(A) if and only if Ψ(X) is a circuit in M(S). Equivalently, a set Y is 
independent in M(A) if and only if Ψ(Y) is independent in M(S). Thus matroid 
M(A) and M(S) have the same structure or are isomorphic.  A matroid that is 
isomorphic to the cycle matroid of a graph is called graphic. Therefore, the 
matroid M(A) in Example 1 is graphic. 
 

9.3 MATROIDS RELEVANT TO STRUCTURAL MECHANICS 

Matroids have been applied to various problems in structural analysis and the 
study of the rigidity of skeletal structures. In this section, examples of such 
matroids are considered, and the properties associated with each one are discussed. 
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9.3.1   A BASIS FOR A FINITE VECTOR SPACE 

A conceptual study of structural analysis using vector spaces has been made by 
Maunder [169]. One can easily obtain a matroidal version of this study, by 
constructing matroids of the following kind: 

Let V be a finite vector space and F be the collection of linearly independent 
subsets of vectors of V. Then M = (V, F) forms a matroid. The rank function of 
this matroid is the dimension of V, and its base forms a basis of the vector space. 

Although a finite vector space always constitutes a matroid, not all matroids are 
realizable as vector spaces. 

9.3.2   A BASIS FOR CYCLE SPACE OF A GRAPH 

A cycle basis of a graph is defined in Chapter 1, and its application for the 
formation of a statical basis of a structure is described in Chapter 6. In this section, 
a cycle space and its bases are formulated in terms of matroids. 

Let C contain all simple cycles of a graph S, and F be the collection of mod 2 
independent cycles of S. Then (C,F) forms a matroid, defined as cycle space 
matroid MS(S) of S. A base of MS(S) is a cycle basis of S, and its rank is M(S) − 

N(S) + b0(S). 

The above matroid can be defined using the member-cycle incidence matrix of a 
graph. Each row of this matrix corresponds to a member, and each column 
represents a cycle. 

The columns of a member-cycle incidence matrix are either dependent or 
independent. Take the columns of the matrix as elements of C, and independent 
subsets of columns as elements of F. Then (C,F ) forms a cycle space matroid 
Ms(S) of S. 

Example:  Consider a graph S as shown in Figure 9.2. This graph contains 3 
cycles C = {C1, C2, C3} and F = {(C1),(C2),(C3),(C1, C2),(C1, C3),(C2, C3)}. The 
rank of MS(S) = 5 − 4+1 = 2, and {C1, C2} is a typical base of this matroid. 

C2C
C3

1

 

Fig. 9.2   A graph S and its cycles. 
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9.3.3   A BASIS FOR CUTSET SPACE OF A GRAPH 

A cutset space of a graph is defined in Chapter 1, and its application for the 
formation of a kinematical basis of a structure, when the displacement method is 
used, is described in Chapter 5. In this section, a cutset space and its bases are 
defined in terms of matroids. 

Let C* contains all cutsets of a graph S, and F be the collection of mod 2 
independent cutsets of S. Then, (C*,F) forms a matroid, defined as cutset space 
matroid MC(S) of S. A base of MC(S) is a cutset basis of S, and its rank is given by 

N(S) _ b0(S). This matroid can also be defined using the member-cutset incidence 
matrix of S. The rows and columns of this matrix correspond to members and 
cutsets, respectively. The columns of this matrix are either dependent or 
independent. Take the columns of the matrix as elements of C*, and independent 
subsets of columns as elements of F. Then (C*,F ) forms a cutset space matroid 
MC(S) of S. 

Example:  Consider a graph as shown in Figure 9.3. The non-empty elements of 
the set C* contains 7 cutsets { ∗

1C , ∗
2C , ∗

3C , ∗
4C , ∗

5C , ∗
6C , ∗

7C } and F = {( ∗
1C ), 

( ∗
2C ), ( ∗

3C ), ( ∗
4C ), ( ∗

5C ), ( ∗
6C ), ( ∗

6C ), ( ∗
1C , ∗

2C ), ( ∗
1C , ∗

3C ), ( ∗
2C , ∗

3C ), ( ∗
1C , ∗

4C ), 

... ,( ∗
1C , ∗

6C , ∗
7C )}. A typical base of the cutset space matroid, can be taken as B1 = 

{ ∗
1C , ∗

2C , ∗
4C }. 

C
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Fig. 9.3   A graph and its cutsets. 

9.3.4   CYCLE MATROID OF A GRAPH 

Spanning trees of a connected graph (spanning forest when S is not connected) 
have various applications. Some of its applications in structural engineering are 
described in Chapters 3, 5 and 6. In the following, a cycle matroid is defined in 
different inter-related forms, a base of which is a spanning tree of S: 
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Let S be a graph. Consider S as the set of members of S, and let X ∈ F if and only 
if X does not contain a cycle of S, i.e. it is a cycle-free subgraph (subtree if S is 
connected and subforest if it is disconnected). Then F is a collection of 
independent sets of a matroid in S, known as the cycle matroid of S, denoted by 
M(S). This matroid is called a polygon matroid by Tutte [241]. 

Alternatively, let S be a graph and consider the set of all spanning forests of S as 
B. It can easily be shown that B is a base set of a matroid M = (S,F) on member set 
M(S) of S, known as the cycle matroid of S. 

Similarly, let C denote the set of simple cycles of a graph S, then C is the set of 
circuits of a matroid M on member set M(S), called a cycle matroid of S. The rank 
of M(S) is N(S) − b0(S), and for a connected graph it is N(S) − 1. 

Example:  Consider a graph S as shown in Figure 9.4(a). The sets S and F for the 
cycle matroid of S are as follows: 

S = {m1,m2,m3,...,m7} and F = {( m1), (m2), ...,(m7), (m1, m2),( m2, m3) , ..., (m1, m2, 
m4) , ...,(m5,m6,m7) , ..., (m1,m2,m4,m5)}. 

A typical base of M(S) may be considered as B1 = { m1,m2,m4,m5}, and a typical 
circuit of M(S) can be taken as { m1,m2,m3} or { m1,m2,m5,m6}. 
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          (a) A graph S.                          (b) A typical base of M(S). 

Fig. 9.4   A graph S and a typical base of its cycle matroid. 

9.3.5   COCYCLE MATROID OF A GRAPH 

Let S be a graph and C* denote the set of cutsets of S. Then, C* is the set of 
circuits of a matroid on M(S), called a cocycle or cutset matroid of S, denoted by 
M*(S). Obviously, a set X of members of S is a base of the cocycle matroid 
M*(S), if and only if M(S) − X is a spanning forest of S. For a connected graph, 
the members of M(S) − T are known as cotrees of S. The rank of M*(S) is given as 
r(M*(S)) = M(S) − N(S) + b0(S). 



298                                             Structural Mechanics: Graph and Matrix Methods 

 

 

298

Definition:   Let M be a matroid on S, whose bases are Bi. The collection of sets S 
_ Bi are bases of another matroid M* on S, known as the dual matroid of M. This 
dual matroid is unique for an M, and the dual of a dual matroid is M itself. Circuits 
of M are called cocircuits or cutsets of M*. 

By definition, it follows that the cycle matroid M(S) is the dual of the cocycle 
matroid M*(S) of a graph S. 

Example:  Let S be a connected graph as shown in Figure 9.5. 

m 3m

m

m 1 2

4  

Fig. 9.5   A connected graph S. 

The circuits of M(S) and M*(S) are as follows: 

                         C (S) = {m2,m3,m4}, 

and                   C*(S) = {m1},{m2, m4},{m3, m4},{m2, m3}. 

9.3.6   RIGIDITY MATROID OF A GRAPH 

Graph theoretical approaches to the study of the rigidity of planar trusses are 
described in Chapter 3. Further investigation has proved the suitability of matroid 
theory to the study of rigidity, Refs [15,1210,249]. In this section, a simple 
definition of the rigidity matroid of a graph is given. 

Let S be a graph, and define the support N(Fi) of a subset Fi of M(S) as the set of 
end nodes of members in Fi. Define a subset Fi of M(S) to be independent, if 
|M( iF′ )| ≤ 2|N( iF′ )| − 3 holds for all subsets iF′ of Fi. These independent sets 
collectively form F, and (M(S),F) form a matroid known as a two-dimensional 
generic rigidity matroid R(S) of the graph S. A graph S is called rigid, if r(M(S)) = 
2N(S) − 3. A circuit of R(S) is a minimally dependent subset of M(S), examples of 
which are depicted in Figure 9.6. 



CHAPTER 9  Matroids and Skeletal Structures                                                  299 

 

 

299

 

Fig. 9.6   Examples of circuits of R(S). 

9.3.7   MATROID FOR NULL BASIS OF A MATRIX 

Matroids are employed in combinatorial approaches to the force method of 
structural analysis, as will be described in Section 9.5. Matroids are also used in 
algebraic force methods, Ref. [74], a brief description of which is given here. 

Let Ax = b be the equilibrium equations of a structure, where x and b are the 
vectors of internal forces and applied loads. For a statically indeterminate 
structure, A is an m×n rectangular matrix with n < m and rank A = m. 

Take the columns of A as the elements of S of a matroid M = (S,F) whose 
independent subsets are linearly independent subsets of the columns of A. A 
circuit is a minimal dependent subset of columns. Generate all such circuits and 
consider it as C = {C1,C2,...,Cr}. Now form another matroid Mn = {C,Fn}, where Fn 
consists of subsets of independent circuits of C. A base of Mn is a null basis of A, 
i.e. columns of a matrix B1 such that AB1 = 0. 

For an efficient analysis, special null bases are required, which correspond to 
sparse flexibility matrices. The formation of such bases become feasible using the 
combinatorial optimisation method of Section 9.4. 
 

9.4   COMBINATORIAL OPTIMISATION: THE GREEDY ALGORITHM 

In 1926, Boruvka solved the following problem: 

 Given a matrix of order n, having distinct positive real coefficients with 

 Aii = 0 and Aij = Aji, it is possible to find a set of coefficient such that: 

 1.  There exist two randomly natural numbers k1, k2 (≤ n) belonging to  

       the set of the form  Ak1h2, Ah2h3,...,Ahq-2hq-1, Ahq-1k2. 
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 2.  The sum of the terms of this set is minimal. 

In graph theoretical terms, the above problem can be stated as follows: 

For a connected graph with distinct positive real numbers assigned to its members, 
there is a shortest spanning tree, where the length of the tree is the sum of the 
numbers assigned to its branches. 

After 30 years, Kruskal [146] in 1956 stated the above problem and gave three 
inter-related efficient algorithms for the selection of a shortest spanning tree of a 
connected graph. The uniqueness of the existence of such a tree was also proved 
in his paper. One of these methods is summarized in the following. 

Let {mi; i=1,2,...,M(S)}be the member set of a graph S. Perform the expansion, 

 m1 → m1 ∪ m2 →  ... → T, (9-2) 

where mi+1 is chosen such that it has the smallest weight and does not form a cycle 
with m1 ∪ m2 ∪... ∪ mi. A shortest spanning tree will then be obtained.  

This method formed a basis for the Greedy Algorithm for matroids, developed by 
Rado [199] and independently proved by three different authors, Refs. 
[42,54,243]. 

Greedy Algorithm 

Let M = (S,F ) be a matroid. Assign a positive value to each element of S, denoted 
by W(s), s ∈ S. For a subset X ∈ F , define a weight function as, 

 W(X) =ΣW(si), (9-3) 

where summation is taken over all elements si of  X ⊆ S. 

The problem is to find a subset Xopt of S, such that Xopt ∈ F and W(Xopt) is 
minimum (or maximum) over all elements of S. The Greedy Algorithm proceeds 
as follows: 

Select an element s1 of minimal (maximal) measure (weight) from S, and let F1 = 
{s1}. Form F2 from F1 by adding an element s2 of minimal (maximal) measure 
such that F2 is an independent set from S − {s1}, and let F2 = F1+{s2}. 
Subsequently choose si+1 of minimal  (maximal) measure from S − {s1,s2,...,si} 
such that Fi+1 is still an independent set. This process is clearly finite, and the 
finally selected set is a base of minimal (maximal) measure for M. 
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An elegant proof of the minimality of the selected base may be found in Refs. 
[243,244]. 

Example:  Consider a graph S as shown in Figure 9.7(a), with some positive 
weights assigned to its members. A base of minimal measure for cycle matroid 
M(S), which is a spanning tree of minimal weight, is selected as depicted in Figure 
9.7(b). 

2

57

4 3

1 8

 

(a) A graph S. 

 
(b) Expansion process of the Greedy Algorithm. 

Fig. 9.7   A graph and the selected minimal base for its M(S) matroid. 

 

9.5 APPLICATION OF THE GREEDY ALGORITHM: 

 A COMBINATORIAL FORCE METHOD 

In Chapter 6 it is shown that, for an efficient force method, the sparsity of the 
flexibility matrix of a structure, which is pattern equivalent to the generalized 
cycle adjacency matrix of its graph model, should be maximized. This can be 
achieved by the use of a generalized cycle basis of minimal measure, where the 
weight of a γ-cycle is taken as its length (the number of its members). The Greedy 
Algorithm is a powerful means for this purpose. However, its application 
engenders certain difficulties, which form the remainder of this chapter. 

Let a γ-cycle of a graph S be defined as a minimal subgraph Ci of S, which is rigid 
and γ(Ci) = a. A maximal set of independent γ-cycles of S is known as a 
generalized cycle basis of S, the dimension of which is equal to η(S) = γ(S)/a. The 
integer "a" is defined in Table 2.1 (p. 44). 
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The set of all γ-cycles of S, together with F containing independent subsets of γ-
cycles, form a matroid Mgc(S), called the generalized cycle space matroid. A base 
of this matroid is a generalized cycle basis of S. Therefore, the Greedy Algorithm 
selects a minimal generalized cycle basis of S. 

Algorithm:  Let the weight of a γ-cycle be measured by the number of its 
members. Select all γ-cycles of S, denoted by C, and proceed as follows: 

Step 1: Select the first γ-cycle of minimal length from C. 

Step 2: Take the second independent γ-cycle of minimal length from C − {C1}. 

Step k: Subsequently choose a γ-cycle Ck of the least length from C − {C1, C2, 
..., Ck-1} which is independent of the previously selected γ-cycles. Continue the 
process until β(S) of γ-cycles, forming a minimal generalized cycle basis, is 
generated. 

Proof:  Let β  be an optimal generalized cycle basis of S, and let β be the basis 
selected by the Greedy Algorithm. Let the γ-cycles of β be ordered and denoted 
by: 

 Ck = Ck  _  Ck−1   where  Ck  = .Ci

k

1i=
∪  (9-4) 

 

Then a γ-cycle Ci ∈ β exists such that:  

 C1,C2,...,Ci-1 
∈ β ∩ β           Cj ∈ β . (9-5) 

By the well-known exchange theorem of matroids, there exists kC  ∈ β  such that,  

 ∗β  = { β  + Cj − kC }, (9-6) 

forms a basis. Moreover, kC ∈ C
i-1 

must hold or else ∗β  would contain only β(S) 
_1 distinct γ-cycles.  

By definition, L( β ) ≤ L( ∗β ), which implies L(Cj) ≥ L( kC ). But the inequality 

cannot hold since kC  would then have been selected in place of Cj by the 
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algorithm at that stage, and therefore L( ∗β ) = L( β ). Hence ∗β  is also an optimal 

basis which has more γ-cycles in common with β than β . Continuing to reduce in 

this way, it becomes evident that L(β) = L( β ) and thus β forms a minimal 
generalized cycle basis for S. 

 
 

9.6  PROBLEMS WITH APPLICATIONS OF  

 THE GREEDY ALGORITHM 

In practice, three main difficulties are encountered in an efficient use of the 
Greedy Algorithm: 

1. The formation of a γ-cycle; provision of its rigidity. 

2. The formation of all γ-cycles of S. 

3. Checking the independence of each selected γ-cycle. 

In the following, the above problems are discussed for different types of skeletal 
structures, listed in Table 2.1: 

9.6.1  PLANAR AND SPACE FRAMES  

For this type of structure, γ(S) = αb1(S) (α=3 or 6), and α S.E.Ss can be generated 
on each cycle of the selected cycle basis. For maximal sparsity of flexibility 
matrices, optimal cycle bases should be formed. However, minimal cycle bases are 
often preferred due to simplicity and applicability of the Greedy Algorithm and 
many other topological methods. Only minimal cycle bases are discussed here. 

First Problem:  For this type of skeletal structures, a cycle is rigid both in the 
plane and in the space; therefore rigidity is no problem. 

Second Problem:  Formation of all simple cycles of a graph, especially for large 
structures, is quite time-consuming and impractical. Horton [82] limited the 
number of cycles to be formed in conjunction with the Greedy Algorithm to 
M(S)×M(S). The author´s expansion process requires far fewer cycles to be 
generated, of course at the expense of the formation of slightly longer cycle bases. 

Third Problem:   The simplest method for ensuring independence is the use of the 
chords of a spanning tree as the generators of independent cycles. This, in general, 
leads to the formation of very long cycles. This algorithm is modified by 
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employing an SRT rooted at an appropriate starting node. Further improvement 
has been achieved by using ordered chords and addition of the used chord to tree 
branches at each stage of the expansion. Independence can also be ensured using 
the admissibility condition, restricting the increase of cycle rank by unity in each 
step of an expansion process, as has been described in Chapter 6. An alternative 
method is the use of a completion process, Ref. [83]. A simple but rather 
expensive approach to ensure independence is the application of an algebraic 
method such as Gaussian elimination. However, this approach reduces the order 
dependency of the expansion process. A mixed version of admissibility condition 
and Gaussian elimination is recommended for the generation of shorter cycle 
bases. 

It should be added that, future research in this area should be directed to the 
formation of optimal and optimally conditioned cycle bases. 
 

9.6.2  PLANAR TRUSSES 

For this type of structure, γ(S) = M(S) − 2N(S) + 3, and one S.E.S. is generated on 
each γ-cycle of S. For a general planar truss, a generalized cycle basis may be used 
for the formation of a suitable statical basis, which involves the following 
problems: 

First Problem:  The rigidity of a γ-cycle (or a γ-tree when a fundamental 
generalized cycle basis is used) should be provided by one of the methods 
presented in Chapter 3. The matching algorithm of Sugihara [227] is more suitable 
for this purpose. 

Second Problem:  Obviously, the formation of all rigid γ-cycles for a multi-
member truss is laborious and time-consuming. Therefore an expansion process, 
with the selection of one γ-cycle of minimal length at each step, seems to be a 
reasonable approach to overcome this difficulty. 

Third Problem:   For  checking the independence of the  γ-cycles, either a rigid γ-
tree should be used, or the admissibility condition of Chapter 6 should be 
employed. An alternative approach is to use Gaussian elimination, which requires 
a considerable amount of storage. 
 

9.6.3  SPACE TRUSSES 
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For this type of skeletal structure, γ(S) = M(S) − 3N(S) + 6, and one S.E.S. should 
be formed on each γ-cycle. 

First Problem:  Although some studies have been carried out for the rigidity of 
space trusses, further research is needed for efficient implementation of the 
developed ideas. These studies are confined to specific configurations, and it is 
believed at this stage that algebraic approaches, or mixed algebraic-topological 
methods, are more suitable for this type of skeletal structure, Refs. [58,87,238]. 

Second Problem:  Formation of all γ-cycles for space structures having a 
considerable number of members is very difficult, and again an expansion process, 
with the selection of one γ-cycle of smallest length at a time, seems to be the only 
practical approach, once the problem of the rigidity is solved. 

Third Problem:  As for planar trusses, this problem does not produce a serious 
difficulty in the process of selection of a generalized cycle basis. 
 
 

9.7   FORMATION OF SPARSE NULL BASES 

9.7.1  DEFINITIONS 

The bipartite graph B(A) of a matrix A can be constructed by associating one row-
node with each row i and one column-node with each column j if the 
corresponding entry aij of A is non-zero. As an example, the matrix A and the 
corresponding bipartite graph B(A), together with a matching in A and its graph, 
are shown in Figure 9.8: 
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Fig. 9.8   A rectangular matrix A and its bipartite graph B(A). 

It can be proved that a matrix A has a complete matching if and only if it has the 
Hall property; i.e. if subsets of its rows have non-zeros in at least as many 
columns. It has also been proved that the matching number of a matrix is greater 
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than or equal to its rank. Therefore, a matrix with full rank has a complete 
matching. 

9.7.2  NULL BASES FORMATION 

A complete matching of B(A) partitions the columns of A into the set of matched 
columns M and a set of unmatched columns U. As an example in Figure 9.8, 
{b1,b2,b3} are matched and {b4,b5} are unmatched columns. It is shown that, for a 
column u ∈U, a circuit can be constructed using an alternating path algorithm (see 
Chapter 1). 

An M-alternating path is a path whose members are alternately from the matching 
M and outside M. As an example, in Figure 9.8, {b5,a1,b1,a3,b2} is an M-
alternating path in A. We say b5 is reachable from b1 and b3, and show it with 
b5→b1 and b5→b2. An augmenting path is an alternating path, which begins and 
ends with unmatched nodes. The size of corresponding matching can be increased 
by making the members in the matching unmatched and vice versa.  

For a member u∈U, a dependent set n(u) containing u can be considered, which is 
a circuit if A has the Weak Haar Property (WHP). A matrix has WHP if every set 
of columns C satisfies rank(C) = Ψ(C), where Ψ(C) is the matching number. This 
property ensures that n(u) will be a circuit for all numeric values of the columns of 
A. For a particular set of numeric values of the non-zero entries of A, numerical 
cancellation may occur, in which case the set n(u) will contain a circuit. 

Therefore, for finding a circuit of a matrix with WHP, a complete matching M 
should be constructed and an unmatched column u should be selected. A circuit 
n(u) is formed by following all M-alternating paths from u and adding columns 
visited to n(u), i.e. n(u) = u+{v∈M: u → v}. As an example, two circuits n(b4) = 
{b4,b2,b1} and  n(b5) = {b5,b3,b2,b1} can easily be formed. However, if n(u) does 
not have WHP, then it contains a circuit which should be identified by numerical 
factorization. 

Once the formation of a circuit becomes possible, different algorithms can be 
designed for the formation of a null basis. Two such algorithms are given by 
Coleman and Pothen [29,30], and in the following an algorithm for the formation 
of a fundamental null basis is briefly discussed. 

Let N be the empty set. Find a complete matching M of A, partitioning the 
columns of A as A = [M U]. Then, for each u∈U, construct a circuit n(u). 
Augment the null basis N with the computed null vector. This process should be 
repeated for all members of U in order to obtain a fundamental null basis of A 
with WHP. When A does not have WHP, then a fundamental basis can be 
computed only when M has full rank. Therefore, one should choose M by a 
matching, but should ensure that M has full rank while factoring it to compute the 



CHAPTER 9  Matroids and Skeletal Structures                                                  307 

 

 

307

null vectors. When it is rank deficient, the dependent columns in M should be 
rejected, and a new maximum matching should be found. This will ensure the 
formation of a basis and will always succeed when A has full row rank. 

Remarks: Matroids make the compact formulation of many structural problems 
feasible. Once a matroid has been constructed, the Greedy Algorithm can be used 
for the formation of its minimal base. However, the efficient application of the 
Greedy Algorithm requires special considerations, similar to those discussed in 
Section 9.6. 


