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Abstract

Increasing productivity in machining process demands high material removal rate in stable cutting conditions and depends strongly on

dynamic properties of machine tool structure. Combined analytical–experimental procedures based on receptance coupling substructure

analysis (RCSA) are employed to determine the stability of machine operating conditions at different tool configurations. The RCSA

employs holder–spindle experimental mobility measurements in conjunction with an analytical model for the tool to predict the dynamics

of different sets of tool and holder–spindle combinations without the need for repeated mobility measurements. In this paper an

alternative approach using the concept of tool on resilient support is adopted to predict the machine tool dynamics in various tool

configurations. In the proposed model the tool, represented by an analytical model, is partly resting on a resilient support provided by the

holder–spindle assembly. The support dynamic flexibility is measured by performing vibration tests on the holder–spindle assembly.

Tool–holder joint interface characteristics are included in the model by considering a distributed elastic interface layer between the

holder–spindle and the tool shank part. The distributed interface layer takes into account the change in normal contact pressure along

the joint interface and comparing with the lumped joint model used in RCSA it allows more detailed representation of the joint interface

flexibility and damping which have crucial roles in machine dynamics. Experiments are conducted to demonstrate the efficiency of

proposed model in prediction of milling operation dynamics and it is shown that the model is capable of accurately predicting the

dynamic absorber effect of spindle in a tool tuning practice.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Machine tool regenerative chatter is the main obstacle in
high-speed machining [1]; it produces unstable vibration of
tool due to the feedback between subsequent cuts, and
leads to unwanted effects such as poor dimensional
accuracy and tool or work piece damage. Regenerative
chatter suppression is mainly performed by choosing
proper depth of cut in each cutting speed. Knowledge of
machine tool frequency responses is a primary requirement
in determining the stable cutting conditions. Frequency
responses of machine tool structure, commonly obtained
by experimental mobility measurements, have been used by
many researchers to determine the stable cutting condition
e front matter r 2007 Elsevier Ltd. All rights reserved.
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[2–7]. The process of stability analysis becomes expensive
and time consuming when experimental measurements are
needed for each individual combination of spindle–holder
and tool configurations. This creates a demand for
predictive models that are capable of determining the
dynamics of different tool/spindle/holder configurations
without the need for vibration measurement repetitions.
For slender tools where the system dynamics is mostly
dominated by the tool modes, flexible tool and rigid holder
models are commonly used [8–11]. For tools with
considerable lateral stiffness the dynamics of machining
process is strongly dependent on spindle behavior. Schmitz
et al. [12,13] treated the tool–holder–spindle assembly as
two separate substructures, i.e. the tool and the holder–
spindle, and employed receptance coupling substructure
analysis (RCSA) to predict the tool tip frequency
responses. They predicted tool frequency responses by
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combining the experimentally measured holder–spindle
frequency responses and the frequency responses of the
tool which are obtained from an analytical model.
Employing RCSA enables one to predict the changes in
the tool tip frequency responses due to any variation in the
tool configuration, and removes the need for repeated
frequency response measurements in practices such as tool
tuning.

The RCSA requires the response of the substructures at
all degrees of freedom of the joint interface. Direct
measurement of moments and rotational deformations at
the joint interface is impractical. Due to the difficulties
involved in measurement of rotational motions and
moments, Schmitz et al. [12,13] considered only transla-
tional motion of the spindle substructure. In practice tool
bends at the holder joint interface and ignoring the
rotational flexibilities in modelling produces inaccurate
predictions of machine dynamics. Park et al. [14] proposed
algorithms for determination of rotational responses of
tool/holder joint interface using two adjacent translational
vibration experiments. Movahhedy et al. [15] proposed an
equivalent lumped joint model between the tool and holder
replacing the common translational–rotational spring sets
by two parallel linear springs, avoiding rotational recep-
tance measurements in RCSA. Duncan and Schmitz [16]
used RCSA to predict the dynamics of tool/holder/spindle
assembly and included the rotational flexibility of spindle
assuming that each spindle mode at the joint interface can
be approximated locally using an equivalent clamped–free
Euler–Bernoulli beam. They identified the modal para-
meters of spindle and based on the obtained information
geometrical specifications of the equivalent beam with
similar modal properties are used to predict the rotational
dynamics of the support. Later Schmitz et al. [17–19]
employed the concept of multi-point coupling to provide
more accurate models of the joint interfaces stiffness and
damping. More recently, Erturk et al. [20,21] proposed an
analytical method that uses Timoshenko beam theory to
calculate the tool point response in a given combination by
using RCSA. They used the model in examining the effects
of individual bearing and contact parameters on tool tip
response and the effects of spindle, holder and tool
parameters on chatter stability.

In this paper the tool dynamics is modelled considering
the tool inserted shank is resting on a resilient support. The
support, provided by the spindle–holder, is represented by
a damped-elastic foundation capable of simulating the
dominant translational and rotational deformations of
spindle in each individual frequency. The support recep-
tance functions are measured using a set of mobility
experiments on spindle–holder assembly and are directly
employed in the analytical solution to encounter dynamic
properties of the support. The joint interface between the
tool and the holder is modelled using an elastic interface
layer. Introduction of this layer enables one to take into
account the variation in contact stiffness due to tool
changes, interface contact pressure distribution, etc. The
interface stiffness is assumed to be a complex valued
function to include the joint interface damping effects. The
interface stiffness can be defined as a function along the
tool inserted shank length. This enables the analyst to
introduce the contact stiffness in more detail taking into
account variations of normal pressure between the tool and
holder. The stiffness and damping parameters of the
tool–holder joint interface represented using a distributed
elastic layer is identified by performing an impact test on
the tool–holder–spindle assembly. These parameters are
identified by minimizing the difference between the
measured and calculated receptance curves of the assembly.
An analytical solution is developed for dynamic response
of the assembly and using the obtained solution its
dynamic behavior and stability are investigated in different
machining conditions.
The remaining of the paper runs as follows. In Section 2

the proposed model consisting of a tool partly resting on a
flexible support is introduced and its frequency response at
the tool tip is determined using an analytical approach.
Experimental procedures are conducted in Section 3;
holder–spindle frequency responses are measured using
impact hammer test and are used to calculate the support
dynamic stiffness. Also in this section the tool–holder
interface characteristics are identified by comparison of
measured and calculated receptance curves at the tool tip.
In Section 4 the presented model is used to predict the
milling dynamics and to find the optimum tool length for a
stable cutting condition. A tool tuning practice is
performed using the presented model and its predictions
are validated by experimentally measured responses.
Finally, some conclusions are made in Section 5.
2. Model development

In development of a dynamic model for machining
operations, tool is modelled using continuous beam theory
partly resting on a resilient support; the support resembles
spindle/holder dynamic effects. In this model, shown in
Fig. 1, tool is represented using a step beam with two
sections, namely inserted shank part and the overhung
portion. A tool with more complicated geometry can be
represented using a beam model with variable cross-
sections or a finite element model. The joint interface
between the inserted shank portion of the tool and the
holder is represented by a zero thickness elastic layer. The
dynamics of the tool inserted shank part is considered as an
Euler–Bernoulli beam resting on an elastic support and is
defined using the following governing equation:

EI1
q4U1ðx; tÞ

qx4
þm1

q2U1ðx; tÞ

qt2
¼ KðxÞ½vðx; tÞ �U1ðx; tÞ�,

0pxpL1, ð1Þ

where U1ðx; tÞ is lateral displacement of the tool inserted
shank, vðx; tÞ is the lateral displacement of the tool–holder,
E is Young modulus of the tool material, L1, I1;m1 are,



ARTICLE IN PRESS

Fig. 1. Schematic view of tool–holder–spindle assembly and its repre-

sentative model.
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respectively, the length, second moment of inertia and mass
per unit length of the tool inserted shank and KðxÞ is the
elastic interface layer stiffness coefficient. Stiffness of the
layer is assumed to vary along the tool–holder joint
interface. The elastic layer stiffness coefficient is a function
of normal pressure between holder and the tool inserted
shank, the contact surfaces martial, the surface finish, etc.
It is assumed that there is no slip between these two parts
during machining operations and stiffness coefficient
remains constant. Schmitz et al. [18,19] and Hanna et al.
[22] have obtained typical functions for the normal
pressure distribution between tool, holder and spindle
through numerical simulations. The stiffness of elastic
interface layer is proportional to the normal pressure,
therefore a parametric stiffness distribution based on the
joint type (shrink fit, etc.) is selected and the stiffness
parameters can be identified by matching experimentally
recorded responses. These coefficients are assumed to be
complex valued to include a displacement-dependent
energy dissipation mechanism in the joint interface i.e.:

KðxÞ ¼ kðxÞð1þ iZÞ, (2)

where kðxÞ and Z are the joint interface stiffness and its
structural damping factor. The selected damping mechan-
ism is consistent with physics involved in the joint
and produces a more representative model of damping
compared to the viscous damping model commonly
adopted in other machine tool dynamic models.
The dynamics of overhung portion of the tool is also

defined using Euler–Bernoulli beam theory as

EI2
q4U2ðx; tÞ

qx4
þm2

q2U2ðx; tÞ

qt2
¼ 0; L1pxpL, (3)

where U2ðx; tÞ is lateral displacement of the tool overhung
portion, and L� L1,I2;m2 are the length, second moment
of inertia and mass per unit length of overhung portions of
the tool. The proposed model described in Eqs. (1) and (3)
determines the tool dynamics under different configura-
tions and loadings.
In tool dynamic analysis one requires the tool tip

frequency response function. This function can be obtained
by calculating the tip response to a unit harmonic
excitation applied at the same location. The boundary
conditions at the tool tip in the presence of unit harmonic
excitation are unit harmonic shear force and zero moment;
this is expressed as

� EI2
q3U2ðL; tÞ

qx3
¼ eiot, ð4aÞ

q2U2ðL; tÞ

qx2
¼ 0. ð4bÞ

The boundary conditions on the other end of the tool are
zero shear force and moment, i.e.:

q2U1ð0; tÞ

qx2
¼ 0, ð4cÞ

q3U1ð0; tÞ

qx3
¼ 0. ð4dÞ

The tool is modelled using a step beam with two sections.
The compatibility requirements for the solutions of these
two parts at the interface are continuity of displacements,
slopes, moments and shear forces. These requirements set
the following conditions:

U1ðL1; tÞ �U2ðL1; tÞ ¼ 0, ð5aÞ

qU1ðL1; tÞ

qx
�

qU2ðL1; tÞ

qx
¼ 0, ð5bÞ

EI1
q2U1ðL1; tÞ

qx2
� EI2

q2U2ðL1; tÞ

qx2
¼ 0, ð5cÞ

EI1
q3U1ðL1; tÞ

qx3
� EI2

q3U2ðL1; tÞ

qx3
¼ 0. ð5dÞ

Steady-state solutions for the described linear system
expressed using the partial differential Eqs. (1), (3) are of
the following form:

U1ðx; tÞ ¼ FðxÞeiot, ð6Þ

U2ðx; tÞ ¼ CðxÞeiot, ð7Þ

where the tool deformed shapes FðxÞ andCðxÞ are complex
valued functions due to non-proportional damping nature
of the system. These deformed shapes are obtained by
satisfying the boundary conditions (4) and compatibility
requirements (5).
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The holder–spindle assembly motion in the inserted
shank region vðx; tÞ acts as a forcing function in governing
Equation (1) and under unit harmonic excitation it can be
expressed using translational displacements of two neigh-
boring points on the tool support with the distant d, shown
in Fig. 1, as

vðx; tÞ ¼ v2 þ
L1 � x

d

� �
ðv1 � v2Þ

� �
eiot; 0oxoL1, (8)

where v1 and v2 are the deformation amplitudes at points 1
and 2 on the tool support due to single harmonic excita-
tions at tool tip. The complex frequency-dependent defor-
mation amplitudes v1 and v2 are in fact cross-frequency
responses between these points and the tool tip. Alter-
natively, one may express deformations v1 and v2 in terms
of effective forces applied to points 1 and 2 from tool
inserted shank:

v1

v2

( )
¼ ½G�

f 1

f 2

( )
. (9)

In the above force-displacement relations the 2� 2 sym-
metric frequency-dependent matrix ½G� contains GijðoÞ,
i; j ¼ 1; 2, the measured direct and cross-frequency re-
sponse functions at points 1 and 2, and f 1; f 2 are the
effective applied forces on the holder due to movement of
tool shank part. The distributed force applied on the holder
KðxÞðFðxÞ � vðxÞÞ is replaced by the concentrated forces f i,
i ¼ 1; 2, that produce equivalent shear and bending effects
on the holder–spindle assembly:

f 2 ¼

Z L1

0

1�
L1 � x

d

� �
KðxÞðFðxÞ � vðxÞÞdx,

f 1 ¼

Z L1

0

L1 � x

d

� �
KðxÞðFðxÞ � vðxÞÞdx. ð10Þ

An explicit relationship between v1; v2 and tool inserted
shank part motion FðxÞ is defined using Eqs. (9)–(10)
that is:

v1

v2

( )
¼ ðI2�2 þ ½G�½J�Þ

�1
½G�

R L1

0 ð
L1�x

d
ÞKðxÞFðxÞdxR L1

0 ð1�
L1�x

d
ÞKðxÞFðxÞdx

8<
:

9=
;,

(11)

where

½J� ¼

Z L1

0

KðxÞ

L1�x
d

� �2
1� L1�x

d

� �
L1�x

d

� �
1� L1�x

d

� �
L1�x

d

� �
1� L1�x

d

� �2
2
4

3
5dx.

(12)
an ¼

�
Kn�6

d
þ

Kn�5L1

d

� �
v1 þ

Kn�6

d
þ Kn�5 1�

L1

d

� �� �
v2 � ðk0 �m1o2Þan�4 �

Pn�5
j¼1

Kjan�4�j

ðn� 1Þðn� 2Þðn� 3Þðn� 4ÞEI1
; n46.
Employing the frequency responses obtained from mea-
surement directly into the analysis introduces the true
nature of mass, stiffness and damping effects of the
holder–spindle assembly. Having obtained the holder
motion due to tool tip excitation, we may solve Eq. (1)
and obtain the response of tool inserted shank part.
Response of the tool inserted shank modelled as a beam

on elastic foundation with variable support stiffness is
expressed using a power series [23]. One may introduce the
interface layer stiffness function in a polynomial form:

KðxÞ ¼
XP

p¼0

Kpxp. (13)

Such a polynomial can be viewed as Taylor series
expansion of the actual interface stiffness function.
Correspondingly, the deformed shape for the tool inserted
shank is assumed in the following power series format:

FðxÞ ¼
XN

n¼1

anxn�1, (14)

where N � 1 is the power series order, defined by the
analyst, depending on the desired accuracy, and an,
n ¼ 1; 2; . . . ;N, are complex coefficients. As will be shown
only four of these coefficients are independent and the rest
of the coefficients are expressed as a function of these four
independent parameters. Relations between the coefficients
of inserted shank part of the tool solution are obtained by
substituting the power series solution into the governing
equation (1). This leads to the following relations:

EI1
XN

n¼1

ðn� 1Þðn� 2Þðn� 3Þðn� 4Þanxn�5

þ
XP

p¼0

Kpxp �mo2

 !XN

n¼1

anxn�1

¼ KðxÞ v2 þ ðv2 � v1Þ
x� L1

d

� �� �
. ð15Þ

Eq. (15) must be true for all values of x; this leads to the
following recursive relations:

a5 ¼
1

24EI1

K0L1

d

� �
v1 þ K0 1�

L1

d

� �� �
v2 � ðK0 �m1o2Þa1

� �
,

a6 ¼
1

120EI1

K1L1

d
�

K0

d

� �
v1 þ

K0

d
þ K1 1�

L1

d

� �� �
v2

�

�ðK0 �m1o2Þa2 � K1a1

�
,

The polynomial coefficients, an, 5pnpN, are linearly
dependent on a1; a2; a3; a4, v1 and v2 through recursive
relations (16). These recursive relations can be written in

(16)
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matrix notation as

a1

a2

..

.

aN

8>>>><
>>>>:

9>>>>=
>>>>;
¼ ½Tv�N�2

v1

v2

( )
þ ½Ta�N�4

a1

a2

a3

a4

8>>><
>>>:

9>>>=
>>>;
. (17)

Eq. (11) can be further simplified and a direct relation
between v1, v2 and coefficients an, n ¼ 1; . . . ;N, is
obtained as

v1

v2

( )
¼ ðI2�2 þ ½G�½J�Þ

�1
½G�½R�

a1

a2

..

.

aN

8>>>><
>>>>:

9>>>>=
>>>>;
. (18)

Components of matrices ½Tv�, ½Ta� and ½R� are derived in
Appendix A and I is an identity matrix. Eqs. (17) and (18)
form a set of matrix equations from which the coefficients
of the assumed polynomial an, 1pnpN, can be obtained as
follows:

a1

a2

..

.

aN

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼ ½S�N�4

a1

a2

a3

a4

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

½S� ¼ ðIN�N � ½Tv�ðI2�2 þ ½G�½J�Þ
�1
½G�½R�Þ�1½Ta�. ð19Þ

Having obtained a parametric solution for the tool inserted
shank part in terms ofan, n ¼ 1; . . . ; 4, we turn our
attention to the solution for the overhung part of the tool.

Deformed shape of the tool overhung portion can be
obtained by substituting the solution form defined in
Eq. (7) into the governing equation for this portion
of the tool expressed in Eq. (3). This results in the
following ordinary differential equation in terms of the
function CðxÞ:

CIVðxÞ � l4CðxÞ ¼ 0; l4 ¼
m2o2

EI2
. (20)

Solution to the above ordinary differential equation is of
the following form with the complex coefficients Ci,
i ¼ 1; . . . ; 4:

CðxÞ ¼ C1e
ilx þ C2e

�ilx þ C3e
lx þ C4e

�lx; L1pxpL.

(21)

There are eight independent complex valued coefficients
namely Ci, ai, i ¼ 1; . . . ; 4, which need to be specified in
order to determine the tool response. They are specified by
satisfying the boundary conditions (4) and the compat-
ibility requirements (5). The given boundary conditions
and compatibility requirements form a set of eight linear
equations in terms of these eight independent coefficients
and in general may be written in the following form:

½ZðoÞ�

C1

..

.

C4

a1

..

.

a4

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
¼

1

0

..

.

..

.

..

.

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, (22)

where ½ZðoÞ� is a full rank square matrix (its entries are
given in Appendix A) and entries of right-hand side vector
are all zero except for the first entry which is one, due to the
fact that only Eq. (4a) is non-homogenous and the rest of
boundary conditions (4b)–(4d) and compatibility require-
ments (5) are homogenous. The unknown coefficients
vector can be determined by inversion of matrix ½ZðoÞ� at
any required frequency. Obtaining the solution for tool
dynamics, one may express the tool tip frequency response
function which is necessary in constructing the stability
lobes as

GT ðoÞ ¼ C1e
ilL þ C2e

�ilL þ C3e
lL þ C4e

�lL,

l4 ¼
m2o2

EI2
. ð23Þ

The obtained model predicts the machining dynamics in
different tool configurations. The mobility measurements
are performed once to obtain the support flexibility
functions GijðoÞ, i; j ¼ 1; 2, and to identify the joint
interface stiffness KðxÞ and as long as the support dynamic
flexibility functions and the joint interface stiffness remain
constant the model is capable of predicting the machining
dynamics at different tool configurations. Any change in
tool configurations such as the change in its length, its
diameter, etc. can be implemented in the model. In the
developed method, the support dynamic flexibility matrix
½GðoÞ� and the stiffness and damping properties of elastic
layer KðxÞ are used as input information to predict the tool
dynamics. The following provides an example on how the
measurements are performed to obtain matrix GðoÞ and
the complex stiffness KðxÞ.

3. Experimental model identifications

Experimental setup used to obtain the support dynamic
flexibility matrix ½GðoÞ� and also to identify the stiffness
and damping properties of elastic layer KðxÞ is shown in
Fig. 2. In order to measure the support dynamic flexibility
of a vertical three axis milling machine, two measurement
points are selected on the holder. Fig. 3 and the direct and
cross-mobility response functions are measured. The
system is excited using an instrumented hammer
(B&K8202) and the responses are measured using a uni-
axial piezoelectric accelerometer (B&K4393). The time
domain measurements are collected and transformed into
frequency domain via a dual channel signal analyzer
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(B&K2032). The measured receptance curves are shown
in Fig. 4.

The coefficients of the joint interface polynomial are
identified by conducting a separate set of experiments on
the tool/holder/spindle assembly. In this experiment an
extra long HSS DIN 1889/1 end mill with geometric
properties, tabulated in Table 1, is mounted using a collet-
type holder. An effective diameter for the fluted portion is
Fig. 2. The test setup.

Fig. 3. Support frequency response mea
used in modelling following Schmitz’s proposal [24],
assuming that the equivalent cylindrical section in the
model and the actual fluted portion have the same mass;
the equivalent cylindrical section’s diameter is considered
to be 13.4mm. A low-mass accelerometer is attached to the
tool tip as shown in Fig. 2 and direct mobility measure-
ments are performed using an impact test. The tool tip
measured frequency response is employed in identifying the
joint interface parameters, i.e. polynomial coefficients of
the elastic joint interface layer.
The identification procedure in obtaining the elastic joint

interface layer is based on minimizing the difference
between the observed frequency response and the predic-
tions of the model developed in Section 2. In this study, the
joint interface model is identified in two steps: first a zero
order model is adopted to approximate the joint interface
stiffness function, next the order of function is increased to
achieve improved correlation with the observed behavior of
the machine tool.

3.1. Homogenous joint interface model

Initially, the joint interface stiffness is assumed to be
homogenous. This corresponds to a KðxÞ defined using a
zero order polynomial function. Identification of such a
function is straightforward and the obtained function can
be used as a starting point in identifying the stiffness
functions with higher order polynomial coefficients.
Using the measured frequency response curves of the

support, shown in Fig. 3, and an initial estimate of the joint
stiffness parameter the direct mobility at the tool tip is
calculated. The tool tip frequency response is obtained
using the procedure defined in Section 2 and the order of
polynomial representing the inserted shank deformation is
selected to be 15. The selection of the order is based on the
fact that increasing it to a higher value does not have any
effect on the tool response.
Next an objective function is formed comparing the

difference between measured GmðoÞ and the estimated
surements, direct (a) and cross (b).
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Fig. 4. Measured frequency response curves on the support points.

Table 1

Geometry of the tool (mm)

Total length 230

Shank length 40

Fluted diameter 18

Shank diameter 16

Fig. 5. 3-D plot of the objective function.

Fig. 6. The receptance curves at the tool tip, homogenous joint interface

model (solid line), measurements (dashed line).
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GcðoÞ tool tip frequency responses:

min
K0

k log jGmðoÞ � GcðoÞjk2. (24)

The estimate for the joint stiffness parameter is adjusted in
such a way that maximum agreement between measured
and calculated frequency response curves is obtained and
the objective function is minimized.

A 3-D plot of the objective function versus real and
imaginary parts of the K0, i.e. stiffness and damping
coefficient of the joint interface layer, is shown in Fig. 5. As
shown in this figure the error is minimized when the
contact parameters in the joint interface are set as
k ¼ 3:5� 1010 N=m2, Z ¼ 0:4. The calculated tool tip
frequency response curves using the optimum parameters
and corresponding measured values are compared in Fig.
6. These parameters provide a starting point in optimiza-
tion procedures used in obtaining the higher order stiffness
distribution polynomial coefficients.
3.2. First order joint interface model

Next a first order polynomial form is selected for the
joint interface stiffness function KðxÞ. The parameters of
first order joint interface model are obtained by minimizing
the objective function defined in Eq. (24). A nonlinear least
square algorithm is used to minimize the objective function
by tuning the parameters of joint interface. The zero order
polynomial coefficients obtained in the previous section are
employed as starting point in the optimization algorithm.
The polynomial coefficients that minimize the objective
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Table 2

The identified first order polynomial coefficients

K0 ðN=m2Þ K1 ðN=m3Þ

6:9ð1þ 0:35iÞ � 1010 �8:25ð1þ 0:35iÞ � 1011

Fig. 7. The receptance curves at the tool tip, linearly varying joint

interface model (solid line), measurements (dashed line).
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function are tabulated in Table 2. The identified stiffness
function shows a decreasing trend in contact stiffness
between the tool and holder as x varies from zero to L1

which is consistent with our expectation of behavior of
such a joint. Increasing the order of polynomial from zero
to one produces 7% decrease in the minimum value of the
objective function in previous section which indicates
further improvement of the model.

Using the obtained first order joint interface stiffness
function the tool tip frequency response is calculated and is
compared with the measured function in Fig. 7. An
improvement in the model predictions especially in the
vicinity of tool second mode at 1492Hz is considerable.
This demonstrates the efficiency of the proposed model in
prediction of tool dynamics.
Fig. 8. The stability lobe diagram (tool overhung length 0.19m).
4. Results and discussions

An accurate model for prediction of tool dynamics is
developed in previous sections. In the present section the
performance of the model is investigated considering the
tool dynamics in milling operation of an aluminum work
piece. A step-by-step procedure to construct the tool tip
frequency response required for generating the stability
lobes is as follows:
1.
 Development of an analytic model for tool similar to the
one presented in Section 2.
2.
 Measuring the direct and cross-frequency response
functions GijðoÞ, i; j ¼ 1; 2, at points 1 and 2 on the
holder, shown in Fig. 3, within frequency range of
interest.
3.
 Identifying the elastic joint interface layer between tool
and holder using procedures explained in Sections 3.1
and 3.2.
4.
 Incorporating the above information into Eqs. (17)–(21)
to form matrix ½ZðoÞ� and to determine the unknown Ci,
i ¼ 1; . . . ; 4.
5.
 Obtaining the tool tip frequency response from Eq. (23).

6.
 Evaluating the dynamics of the machining process using

the obtained tool tip frequency response.
The stability diagrams are generated using the procedure
presented by Budak and Altintas [2,3]. The required
frequency responses for this procedure are generated using
the developed model in Section 3.2. The obtained stability
lobes are shown in Fig. 8. Next a tool tuning practice is
performed using the developed model; the tool overhung
length is varied and its dynamic is investigated at different
configurations. The change in critical depth of cut, i.e. the
stable depth of cut in a range of cutting speeds, is studied
in terms of tool overhung length. The stability decreasing
trend by increasing the tool length is observed in this
practice, as shown in Fig. 9. Also the local increasing
in stability diagram can be recognized in the figure in
two specific tool overhung lengths i.e. 130 and 159mm.
At these two specific lengths the fundamental modes of
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Fig. 9. Critical depth of cut versus overhung tool length.

Fig. 10. Measured (dashed line) and predicted (solid line) receptance

curves; overhung length 0.159m.

Fig. 11. Measured (dashed) and predicted (solid) receptance curves near

the first mode.
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tool overhung part are 428 and 314Hz, respectively.
The local increases in stability are justified considering
the dynamic absorber effect of spindle modes on tool
vibration [12,13]; when the tool dominant mode corre-
sponds with one of spindle natural frequencies, stability of
the system increases. By inspecting the frequency responses
of the holder–spindle assembly shown in Fig. 3 one can
detect the resonances at 314 and 428Hz. There are
two specific tool lengths within range of interest in
which the tool dominant mode of vibration and one of
the spindle modes match; the tool length can be tuned so
that the dynamic vibration absorbing phenomenon comes
into effect, hence obtaining the optimum tool overhung
length.
To validate the predictions of the model, the tool length

is changed to 159mm and frequency response function is
measured at the tool tip. Predicted and measured frequency
response curves are shown in Fig. 10; there is an excellent
agreement between the two responses indicating the
accuracy of presented model in prediction of tool dynamics
in different configurations. Fig. 11 compares the tool tip
frequency responses at two different tool lengths: 190 and
159mm; by decreasing the tool length the first mode of
spindle at 314Hz interacts with the first mode of tool
overhung length and produces a double peck in the
frequency response plot at this frequency due to dynamic
vibration absorption effect.
This experimental case study reflects the fact that the

developed model is capable of accurately predicting the
milling dynamics, including the dynamic vibration absor-
ber effect due to spindle modes of vibrations, demonstrated
by a tool tuning practice.
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5. Conclusions

A new approach in modelling high-speed machining
dynamics is presented using the measured dynamic
flexibility of the holder–spindle assembly and an analytic
model for the tool. This enables the analyst to model the
machining dynamics in various tool combinations without
the need for repeated measurements. The joint between the
tool and holder unlike other commonly used models which
employ lumped stiffness and viscous dashpots is repre-
sented using a zero thickness distributed interface layer
with variable stiffness. The proposed tool–holder distrib-
uted parameter joint interface takes into account the
change in normal stiffness along the tool shank part. This
variation is due to the change in normal pressure along the
joint interface. The model also uses a displacement-
dependent damping mechanism to account for structurally
damped characteristics of the interface. The interface layer
parameters are identified using experimentally observed
behavior of the tool–holder–spindle assembly.

An experimental study is performed to verify the
effectiveness of the proposed model and its capability in
predicting the structure dynamics. A physically justifiable
linearly varying tool–holder interface stiffness function is
identified from the measured results and the tool dynamics
is predicted using the proposed model. The linear variation
of the interface stiffness is due to the mechanism used to
join the tool and holder. Employing such an interface layer
in modelling significantly improves predictions of machin-
ing dynamics. It is shown using an experimental case study
that the developed model is capable of accurately predict-
ing the milling dynamics, including the dynamic vibration
absorber effect due to spindle modes of vibrations,
demonstrated by a tool tuning practice.
The accuracy of model in predicting the frequency

responses of the machine at various tool configurations and
its ability to demonstrate the physical phenomena involved
in the machine structure such as dynamic vibration
absorbing effect are demonstrated in the case studies. The
results reflect the fact that the assumptions made in
constructing the model are based on valid engineering
judgments and the model can be used to predict the
machine dynamics at working conditions beyond those
considered in this study.
Appendix A

In this Appendix the entries of matrices ½Tv�, ½Ta�, ½R� and ½Z� are derived.
Based on the recursive equations (16) the entries of matrices ½Tv�, ½Ta� when the interface stiffness function KðxÞ is

assumed to be linear take the following forms:
½Ta� ¼
1

EI1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

m1o2 � K0

24
0 0 0

�K1

120

m1o2 � K0

120
0 0

0
�K1

720

m1o2 � K0

720
0

0 0
�K1

7� 720

m1o2 � K0

7� 720

m1o2 � K0

8� 7� 720

m1o2 � K0

24

� �
0 0

�K1

8� 7� 720
� � � �

� � � �

� � � �

2
666666666666666666666666666666664

3
777777777777777777777777777777775

. (A.1)
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The first few rows of matrix ½Ta� are derived and the rest can be obtained from Eq. (16). In case of matrix ½Tv� entries of the
rows 5–7 are non-zero and the rest are zeros:
½Tv� ¼
1

EI1

0 0

0 0

0 0

0 0
K0L1

24d

K0ð1� L1=dÞ

24
ðK1L1=d � K0=dÞ

120

ðK0=d þ K1ð1� L1=dÞÞ

120

�
K1

720d

K1

720d
0 0

� �

� �

� �

2
66666666666666666666666664

3
77777777777777777777777775

. (A.2)
Entries of matrix ½R�, used in Eqs. (18) and (19), are obtained by introducing the inserted shank deflection shape, Eq. (14),
into the right-hand side of Eq. (11):
K
R L1

0 KðxÞ
L1 � x

d
FðxÞdx

R L1

0 KðxÞ 1�
L1 � x

d

� �
FðxÞdx

8>>><
>>>:

9>>>=
>>>;

¼

R L1

0

L1KðxÞ

d

PN
n¼1

anxn�1 dx�
R L1

0

KðxÞ

d

PN
n¼1

anxn dx

R L1

0 KðxÞ
PN
n¼1

anxn�1 dx�
R L1

0

KðxÞL1

d

PN
n¼1

anxn�1 dxþ
R L1

0

KðxÞ

d

PN
n¼1

anxn dx

8>>>><
>>>>:

9>>>>=
>>>>;

¼

R L1

0

L1KðxÞ

d
�

KðxÞx

d

� �
dx

R L1

0

L1KðxÞx

d
�

KðxÞx2

d

� �
dx � � �

R L1

0
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1
�

KðxÞL1

d
þ

KðxÞx

d
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dx

R L1

0

KðxÞx

1
�

KðxÞL1x

d
þ

KðxÞx2

d

� �
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2
66664
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..

.
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. ðA:3Þ



ARTICLE IN PRESS
K. Ahmadi, H. Ahmadian / International Journal of Machine Tools & Manufacture 47 (2007) 1916–1928 1927
The matrix ½Z� introduced in Eq. (22) has the following form:

EI2il
3eilL �EI2il

3e�ilL �EI2l
3eLl EI2l

3e�lL 0

�l2eilL �l2e�ilL l2eLl l2e�lL 0
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0 0 0 0 6S41
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where Sij are entries of matrix ½S� defined in Eq. (19).
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