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a b s t r a c t

Under high amplitude vibrations, contact interfaces experience micro-vibro-impacts

and frictional slips. These nonlinear mechanisms can introduce response nonlinearity

and energy dissipation into the structures containing them. Beams are widely used in

engineering structures and almost in every application they are subjected to boundary

conditions. Boundary conditions may contain nonlinear contact interfaces. Therefore,

modeling accurately the micro-vibro-impacts and frictional slips developing at the

boundary condition of a beam is important in structural dynamics. Ignoring this may

result in major discrepancies between experimental observations and theoretical

calculations. In this paper identification of micro-vibro-impacts and frictional slips at

boundary condition of a nonlinear beam is considered. The structure, being modeled as

an Euler–Bernoulli beam, is analyzed using nonlinear normal modes. A reduced-order

model governing the dynamic response of the beam near its first resonant point is

resulted from the analysis. Identification of the nonlinear boundary condition

parameters can be performed by means of the reduced order model and using

experimental results.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Beams are one of the most commonly used elements in mechanical structures. They usually contain boundary
conditions of different types. Boundary conditions can cause nonlinearity in the response and dissipation of the energy due
to nonlinear mechanisms developing at their contact interfaces. Neglecting the nonlinear characteristics of the boundary
conditions is the main source of discrepancies between experimental observations and the results obtained by using
analytical/numerical models.

The nonlinear nature of the contact interfaces can be associated to two different mechanisms: slip and slap (or vibro-
impact) mechanisms. Slip takes place when two adjacent surfaces, being in contact with each other, move tangentially
against each other due to applying an external tangential load. In this condition the interface may experience stick, micro-
slip or macro-slip; depending on the amplitude of the applied load. In micro-slip, small regions at the interface area start to
slip. Increasing gradually the amplitude of the applied load will result in increasing the size of the micro-slip regions.
Finally all the interface area start to slip and the so-called gross or macro-slip happens. Slip mechanism introduces
nonlinearity in stiffness and damping characteristics of the contact interface. Precise structural dynamic analysis needs this
mechanism to be modeled accurately.
ll rights reserved.
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Comprehensive investigations of friction in contact interfaces have been presented by Ferri [1], Berger [2] and Ibrahim
and Pettit [3]. Over past decades, a number of models have been proposed addressing the frictional slip mechanism. Iwan
model [4] consists of an array of parallel springs in series with Coulomb friction elements. Dahl model [5] is essentially
Coulomb friction but there is a lag in the change of friction force when the direction of motion is changed. The Valanis
model [6,7], the Leuven model [8,9] and bristle models [10] are other examples of friction models. These models offer
smooth transition from stick to micro-slip and macro-slip (sliding) behavior. Bristle models capture both the micro-slip
and macro-slip regimes of interfacial friction. The LuGre friction model [11] is also based on a bristle interpretation of the
frictional interface. The above models have been widely used by many researchers for constructing mathematical
representations of the structures containing frictional interfaces such as joints. Gaul and Nitsche [12] and Segalman [13]
described a range of constitutive and phenomenological models for joint interface mechanisms.

Slap (or vibro-impact) mechanism takes place in contact interfaces which are subjected to high amplitude vibrations.
Vibro-impacts develop when nearby portions of the contact interface move against each other in a direction normal to the
tangential direction. If the nearby portions completely separate from each other and come to contact repeatedly, macro-
vibro-impact happens. The main feature of macro-vibro-impact is transferring energy to higher frequencies than those
excite the impact mechanism. Micro-vibro-impacts develop when the applied external loads are less than the interface
normal force. In this condition microscopic impacts develop between the elastic deformations and absorb a small amount
of energy. The main feature of this mechanism is dissipating energy from the structure in a nonlinear fashion. A
comprehensive literature survey on contact dynamics has been presented by Gilardi and Sharf [14].

Impacts developing in the contact interfaces represent a very common source of structural nonlinearity. Modeling and
analysis of systems with vibro-impact nonlinearities is a challenging problem in structural dynamics. The effects of vibro-
impact (micro and macro) on the dynamics of beams have been the subject of many researches in the past. Emaci et al. [15]
studied the nonlinear motion of a flexible assembly consisting of two cantilever beams whose motions were constrained
by barriers. They expressed the impact damping in the form of viscous damping (damping proportional to velocity).
Moon and Shaw [16] investigated the chaotic behavior of a clamped beam both numerically and experimentally. They
assumed that the other end of the beam freely moved in one direction but in the other direction encountered a stop.
Knudsena and Massih [17] studied the dynamics of the beams which were clamped at one end and constrained against
unilateral contact sites near the other end. They employed Euler–Bernoulli beam theory and Rayleigh damping theory for
modeling the structure. The existent and stability of periodic orbits and the local bifurcation under harmonic excitation
forces were studied by using Poincare mapping. They verified their approach by using the test results presented by Moon
and Shaw [16].

Azeez and Vakakis [18] used proper orthogonal decomposition (POD), also known as the Karhunen–Loeve (K–L)
method, to study the nonlinear effects of vibro-impacts on the dynamics of a clamped beam and a rotor. Rigid barriers were
used to induce symmetrical vibro-impacts close to the free end of these structures. Kerschen et al. [19] identified a
symmetrical and asymmetrical nonlinear beam by using restoring force surface method. The beam was clamped at one end
and subjected to rigid barriers – single and double – somewhere in the middle. They used bilinear spring and viscous
damping elements and modeled the vibro-impact mechanism. By measuring the beam’s response to a harmonic excitation,
the parameters of the vibro-impact model were identified.

As it was stated earlier in this section, the main feature of micro-vibro-impact mechanism is to dissipate energy in a
nonlinear fashion. This subject has also been investigated by many researchers. Crawley et al. [20] attempted to use the
coefficient of restitution to measure the energy dissipation due to impact. Hunt and Crossley [21] showed that the linear
damping model does not correctly capture the energy dissipation due to vibro-impacts. They proposed a nonlinear
damping model based on the Hertz’s theory. Their model was an extension of the model had previously been proposed by
Dubowsky and Freudenstein [22]. Dubowsky and Freudenstein used a viscous damping model for representing the energy
dissipation of the impact mechanism in the contact interfaces. Many researchers have reported that the impact damping
model proposed by Hunt and Crossley can represent the nature of the energy dissipation in the contact interfaces with an
acceptable accuracy. The reader is referred to Veluswami et al. [23,24], Azar and Crossley [25] and Padmanabhan and Singh
[26] for more details.

To date, impacts developing in the contact interface of joints and boundary conditions have remained an area with very
limited investigations. Ma et al. [27] experimentally investigated the vibro-impacts developing in the contact interface of a
loose bolted joint. Felkman et al. [28] considered the nonlinearity in the interface of a pinned joint of a truss. They
concluded that the main mechanisms developing in the joint interface are friction and impacting. They identified these
mechanisms by using experimental results. Based on the best knowledge of the authors, up to date, there is no published
article addressing the effects of vibro-impacts on the frictional slip mechanism when they develop simultaneously in a
contact interface. In other words, when slip and vibro-impact mechanisms develop simultaneously, the vibro-impacts
change the actual normal force of the contact interface. Since the behavior of the slip mechanism depends to this normal
force, the slip and vibro impact mechanisms are not decoupled. In these circumstances, the effect of vibro-impacts on the
slip mechanism should be considered. This issue is covered in this paper.

The present paper considers identification of micro-vibro-impact and frictional slip mechanisms developing at the
boundary condition of a clamped beam. The paper goes as follows: In Section 2 the mathematical model of the structure is
constructed using Euler–Bernoulli beam theory. The effects of vibro-impact and slip mechanisms are included using time-
dependent functions. The model is analyzed by employing nonlinear normal modes and a reduced order model is obtained
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for the structure. Section 3 describes an experimental case study. Using the experimental results and the reduced order
model, the equivalent linear system, nonlinear normal modes and the nonlinear contact interface are identified,
respectively, in Sections 4 and 5. Finally, the conclusion is drawn in Section 6.

2. Problem formulation and solution

The Euler–Bernoulli cantilever beam considered in this paper has a contact boundary condition at x=L, where x is the
spatial co-ordinate (see Fig. 1). The beam is characterized by E as Young’s modulus, I the cross-sectional moment of inertia,
r the density, A the cross-sectional area and L the length. The distance between contact point and beam’s neutral axis is
denoted by z0. A constant normal force P is applied to the beam at x=L. The beam is excited into forced vibration using a
harmonic force, i.e. F(t)= f sin(ot). The single point excitation is applied at location x=D. The lateral deflection of the beam
is denoted by w(x,t).

It is assumed that the contact point is not rigid and small deflections at this point are permitted. Therefore the dynamic
response of the beam is affected by the way that the contact point behaves. At low amplitude vibrations, the contact point
is in stick condition in the tangential direction (x direction) and in the normal direction (w direction) the applied normal
force P prevents lateral movements. At these circumstances the structure behaves linearly. If the amplitude of vibrations is
increased, micro-slip and micro-vibro-impact develop in the contact interface due to the rotation and lateral movement of
the beam end. These two mechanisms are inherently nonlinear and introduce nonlinearity in the dynamic response of the
beam. The contribution of this paper is, first, to address the effects of micro-vibro-impacts on the frictional slip mechanism
when they develop simultaneously in a contact interface and, second, to identify these mechanisms by using experimental
results. In the following, the effect of these mechanisms on the dynamic response of the structure shown in Fig. 1 is
mathematically explored. The identification will be considered in next sections.

Micro-slip and micro-vibro-impact mechanisms exert dynamic forces to the beam end. The effects of these mechanisms
are considered in this paper by using time-dependent forces N(t) and R(t), respectively, for slip and impact mechanisms.
The direction of these forces is shown in Fig. 2. By using Figs. 1 and 2, one may obtain the equation governing the lateral
deflection of the beam as

rA €wþEIw
0000

�NðtÞw
00

¼ FðtÞdðx�DÞ ð1Þ

where (�) denotes derivation with respect to time variable t and ( )0 denotes derivation with respect to spatial variable x.
The friction force N(t), being moved to the neutral axis, imposes an axial force to the beam. Eq. (1) also considers the effect
of this axial force on lateral deflection. Eq. (1) is subjected to the following boundary conditions corresponding to the
clamped end of the beam

wð0,tÞ ¼ 0, wuð0,tÞ ¼ 0, ð2;3Þ

Eqs. (2) and (3) show the conditions imposing by the clamped end on the displacement and slope of the beam. At the right
end, the boundary conditions are

EIw00ðL,tÞ ¼ z0NðtÞ, EIwuuuðL,tÞ ¼ FnðtÞþm €wðL,tÞ ð4;5Þ
Fig. 1. Euler–Bernoulli beam with contact boundary condition.

Fig. 2. Direction of the slip and impact forces at the contact point.
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Left-hand side of Eq. (4) is the bending moment of the beam corresponding to the contact point. This moment is equal
to the couple moment created by moving friction force N(t) to the neutral axis. Eq. (5) describes the shearing force of the
beam at x=L. The right-hand side of this equation is composed of two terms. The first term is Fn(t)=R(t)�P, i.e. the actual
normal force applied to the contact interface. The second term needs explanations: in the experimental section, it will be
described that the normal force P is exerted to the contact interface by using a set of blocks of mass m. The second term in
right-hand side of Eq. (5) shows the inertia force of the blocks.

In above equations, N(t) and R(t) are functions of, respectively, shear deformation and velocity, i.e. uðtÞ, _uðtÞ and lateral
deformation and velocity, i.e. wðL,tÞ, _wðL,tÞ, corresponding to the contact point. Shear deformation of the contact point
results from the lateral motion of the beam and can be expressed as Eq. (6). The first term in Eq. (6) corresponds to the
shortening of the beam length due to its lateral motion, the second term results from rotation of the beam end and the
third term is attributed to axial deformation due to frictional force N(t)

uðtÞ ¼�
1

2

Z L

0

@wðx,tÞ

@x

� �2

dxþr
@wðL,tÞ

@x
þNðtÞL=AE ð6Þ

Eq. (6) indicates that u(t) depends on w(L,t); which means that micro-vibro-impact and frictional slip mechanisms are
coupled.

The governing equation and boundary conditions, Eqs. (1–6), are nonlinear as they contain micro-slip and micro-vibro-
impact forces, i.e. N(t) and R(t), which are nonlinear functions. Before solving these equations, first the models being used
in this paper for representing slip and impact mechanisms are described in following.

From the various models which have been presented in the literature for modeling frictional slip, three have gained
more attention in structural dynamics: Iwan, LuGre and Valanis models. Iwan model [4] consists of an array of parallel
springs in series with Coulomb friction elements—the so called Jenkins elements. When one Jenkins element, i.e. one
spring in series with one friction element, is used to model the frictional contact interface, the frictional slip model displays
bilinear properties which indicate that there is an abrupt transition from stick to slip regime. This is not in consistent with
what is observed in reality where the transition from stick to slip is smooth. One alternative way to solve this problem is
using an array of parallel Jenkins elements. The Jenkins elements then have the same stiffness coefficient but breaking
away force of friction elements is different. In Iwan model a probabilistic distribution function governs the breaking away
force of friction elements. The Iwan and LuGre model have more physical insight than the Valanis model. The advantage of
the Valanis model over the other two models is that this model needs fewer parameters to define the frictional contact
interface. In the following, the LuGre and Valanis models, which will be used in this paper, are described in more details.

The LuGre model presented by Wit et al. [11] captures a verity of behaviors such as hysteresis effects and pre-sliding
displacement. This six parameter model is based on the bristle interpretation of the contact interface and its friction force
is defined as

NðtÞ ¼ ðs0zðtÞþs1 _zðtÞþs2 _uðtÞÞP ð7Þ

_zðtÞ ¼ _uðtÞ�s0zðtÞ9 _uðtÞ9=gð _uÞ ð8Þ

s0gð _uÞ ¼ mcþðms�mcÞe
�9 _uðtÞ=vs9

2

ð9Þ

where s0 is the average bristle stiffness, s1 the damping parameter and s2 accounts for the viscous damping. mc and ms are,
respectively, Coulomb and static friction coefficients, vs the Stribeck velocity and P the contact normal force.

The four parameter Valanis model was adopted from the theory of elasticity [6,7]. In this model, the change of the
friction force, N(t), is given by the following equation:

_NðtÞ ¼
e0 _u 1þ l

e0
sgnð _uÞðetu�NðtÞÞ

h i
1þk l

e0
sgnð _uÞðetu�NðtÞÞ

, l¼
e0

a0 1þk et

e0

� � ð10Þ

where e0 is the stiffness modulus of contact interface at sticking condition, et shows the slope of the slip motion, k controls
the smoothness of the hysteresis loop for transition from stick to slip and l is characterized by the stick limit.

The model presented by Hunt and Crossley [21] is used in this paper for taking into account the effects of micro-vibro-
impacts. This model, which is based on interpretation of impact damping by using coefficient of restitution, consists of a
linear spring and a nonlinear damping. It was proposed by Hunt and Crossley for describing impacts between compact
solid bodies. When the bodies are in compressive contact and there is no backlash in the interface, microscopic impacts
develop between the elastic deformations and thereby absorb a small amount of energy. In this condition the contact
normal force can be expressed as

RðtÞ ¼wðL,tÞðaþb _wðL,tÞÞ ð11Þ

where a and b represent, respectively, the stiffness and damping characteristics of contact interface in normal direction.
Up to this point, the governing equation and boundary conditions of the structure shown in Fig. 1 were derived.

Also, three models were described which will be used in later sections when identification of the micro-slip and



H. Jalali et al. / Mechanical Systems and Signal Processing 25 (2011) 1073–1085 1077
micro-vibro-impact mechanisms is considered. In the following a solution is given for the above stated problem which is
useful for identification purposes.

The dynamic response of a structure is more affected by the boundary conditions in the lower modes. On the other side, the
behavior of the slip and micro-vibro-impact mechanisms is frequency independent. Keeping these in mind, in this study, the
external excitation force F(t) is considered single harmonic and the excitation frequency is chosen to be close to the first
resonant point. Therefore, the nonlinear behavior of the beam can be spanned using its first n nonlinear normal modes
foiðaÞ,

~fiðx,aÞg as

wðx,tÞ ¼
Xn

i ¼ 1

~f iðx,aÞqiðtÞ ð12Þ

The nonlinear normal modes are equal to the modes of corresponding linearized structure at the same response amplitude
level [29,30]. They are functions of the maximum response amplitude level corresponding to the driving point, i.e. a

a¼max wðD,tÞ, t 2 t,tþ
2p
on

� �� 	
ð13Þ

Substituting Eq. (12) into Eq. (1), multiplying the resultant equation into ~fjðx,aÞ and integrating over the beam length
and after some algebraic manipulations, the following equation is obtained

€qiðtÞþo2
i ðaÞqiðtÞ�FðtÞ ~fiðD,aÞ ¼ z0

~fui ðL,aÞþ
Xn

r ¼ 1

qrðtÞ

Z L

0

~f
00

r ðx,aÞ ~fi ðx,aÞdx

 !
NðtÞ� ~f iðL,aÞFnðtÞ, i¼ 1,2,. . .,n ð14Þ

The details about deriving Eq. (14) are provided in Appendix.
The theory described and the equations derived in this section are used in subsequent sections and the contact shear

and normal interface forces, i.e. N(t) and R(t), are characterized. In the following section the results obtained from an
experimental case study are presented.

3. Experimental case study

The experimental beam is pictured in Fig. 3. The structural parameters of the beam were given by L=600 mm (length),
b=40 mm (width) and h=5 mm (thickness). The beam was clamped at one end and the other end was subjected to a
contact boundary condition. The contact boundary condition was provided by a pin welded to the beam end. The pin, 5 mm
in radius, was allowed to slip/slap on an underlying steel block as is shown in Fig. 3. Suspended blocks, m=10 kg were used
to apply a constant normal force to the contact interface.

The contact interface experiences different behaviors depending on the vibration amplitude level. Under low amplitude
vibrations it behaves linearly. As vibration amplitude increases, micro/macro-slip and micro-vibro-impact mechanisms
develop and introduce nonlinearity into the response. A point worth to be mentioned about micro-vibro-impacts is that
the stiffness of the contact point in normal direction changes when micro-vibro-impacts develop. In fact, when the pin is
compressed against the underlying steel block, the stiffness of the steel block plays the role of the stiffness in the normal
direction. In contrast, when the pin moves in opposite direction, the flexible wire used for suspending the masses
contributes to the stiffness of the contact point. This implies that in normal direction the stiffness of the contact point is
bilinear. This will be approved later in this paper by using experimental results.

The structure was excited using a B&K4200 mini shaker attached trough a stinger to the structure at distance S=550 mm,
measured from the clamped end. A B&K8200 force transducer was used between stinger and structure in order to measure the
excitation force F(t). The structural response was measured using three accelerometers mounted on the beam at locations
x1=550, x2=300 and x3=100 mm (all measured from the clamped end). The transducers arrangement is shown in Fig. 3. A low
Fig. 3. Test set-up.
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level random excitation force was first applied to the structure, ensuring that the contact interface was in stick regime, and the
linear FRFs were measured. Fig. 4 shows a typical linear FRF. The frequency response function shown in Fig. 4 has symmetry
around the resonant points and no jump is evident; indicating that the contact interface was in stick regime and therefore the
structural behavior was linear. In Table 1 the corresponding linear natural frequencies are tabulated.

Next, measurement of the nonlinear FRFs by using constant response amplitude level approach [31] was considered.
The structure was excited using a harmonic force and the excitation frequencies were chosen to be close to the first natural
frequency. The response amplitude level a corresponding to the driving point was kept constant at all excitation
frequencies. The excitation force and response signals were recorded and the nonlinear FRFs were constructed. Fig. 5 shows
the obtained nonlinear FRFs corresponding to the driving point in different response amplitude levels.

Although FRFs shown in Fig. 5 look like linear FRFs, which is due to keeping the response amplitude level constant, still
the time domain signals, which were recorded at each excitation frequencies, contain nonlinearity effects and can be used
in characterization of the contact interface [32]. Two main features of the nonlinear mechanisms developing in the contact
interface are evident from Fig. 5: shifting the resonant points to lower frequencies and initially decreasing and then
increasing the peak amplitude of FRFs when response amplitude level is increased. The former indicates the softening
effect and the later shows displacement dependent damping effect of the contact interface. It will be shown in next
sections that the models described in Eqs. (7–11) are well able to capture these effects.

The level of damping in a system can be discerned qualitatively from its FRF. Therefore the damping characteristics of
the structure shown in Fig. 3 can be discussed by using the FRFs shown in Figs. 4 and 5. Fig. 4 shows the frequency response
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Table 1
Experimental and updated natural frequencies (Hz), kw=302763684.01 (N/m), ky=183.91 (Nm/rad).

Exp. Upd. Err. (%)

First mode 52.68 52.69 0.03

Second mode 163.64 162.46 �0.68

Third mode 329.77 323.52 �1.87
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curve of linear structure. The damping ratio obtained by using this curve corresponds to the beam and not the frictional
contact interface. The sharp and narrow peaks at three resonant points in Fig. 4 indicate low material damping of the beam.
Also, Fig. 5 shows that when the structure is excited at response amplitude level of 10 m/s2, the peak of the frequency
response curve is still sharp and narrow. At this response amplitude level, the nonlinear mechanisms at the contact
interface have not been excited well and the structural behavior is linear. When response amplitude level is increased to
20 m/s2, the friction damping at the contact interface causes a big decrease in the peak amplitude of the frequency
response curve. Therefore comparing the frequency response curves corresponding to 10 and 20 m/s2 shows that the
structural damping is much lower than the friction damping. For these reasons the effect of material damping was ignored
in governing equation of system, i.e. Eq. (1).

In Eq. (12) the response was considered to be spanned by nonlinear normal modes. Next section considers identification
of the equivalent linear system and calculation of the nonlinear normal modes.

4. Equivalent linear system and nonlinear normal modes

In this section first an equivalent linear system is presented for the nonlinear structure introduced in Eq. (14). Then, by
using the experimental results and adopting the equivalent linear system, the nonlinear normal modes are calculated. In
order to reduce the order of the model defined in Eq. (14), the nonlinear normal modes of the following system are
considered:

EIw
0000

þrA €w ¼ 0 ð15Þ

wð0,tÞ ¼ 0, wuð0,tÞ ¼ 0, EIw00ðL,tÞ ¼ kyðaÞwuðL,tÞ ð16218Þ

�EIwuuuðL,tÞ ¼ kwwðL,tÞ�m €wðL,tÞ ð19Þ

kyðaÞ and kw represent the flexural and normal stiffness coefficients of the boundary condition, respectively. They are in fact
the equivalent linear stiffness of the slip and micro-vibro-impact mechanisms. kyðaÞ is considered amplitude dependent
but kw is assumed to be constant. This assumption is made based on the fact that the natural frequencies are not sensitive
to this parameter. This issue will be covered in details later in this section.

It was stated in previous section that the stiffness of the contact interface in normal direction is bilinear. The position of
the change in the stiffness is at w(L,t)=0. Such a system is inherently nonlinear but shows homogeneity in frequency
domain [33]. Therefore, in Eq. (19) kw is an equivalent linear stiffness coefficient and is obtained from Eq. (20) [34]

kw ¼
4a1a2ffiffiffiffiffiffia1

p
þ

ffiffiffiffiffiffia2
p� �2

ð20Þ

In Eq. (20), a1 and a2 are normal stiffness coefficients of the contact interface in two opposite directions, i.e. when
w(L,t)40 and when w(L,t)o0. These parameters will be identified later in this paper by using time domain experimental
results.

Eqs. (15–19) offer a simplified model of the structure where the geometrical stiffness introduced by the friction force in
the beam is ignored. This simplified model is an equivalent linear model of the structure and is the model used in
identification of the nonlinear normal modes. The effect of the geometrical stiffness of friction force will be considered later
when the nonlinear model of the contact interface is characterized.

Having the reduced order model defined by Eqs. (15–19), identification of the linear parameters of the contact interface
is considered by employing model updating. There are two parameters, kw and ky, to be identified in updating procedure.
These parameters are identified by minimizing the differences between analytical and experimental natural frequencies.
The minimization is done by adopting eigen-value sensitivity approach. The analytical natural frequencies are obtained by
solving the eigen-value problem of an equivalent FE model corresponding to the beam described by Eqs. (15–19). In the FE
model, the mass effects of the accelerometers and force transducer are also considered. The identified parameters,
experimental and updated natural frequencies are shown in Table 1.

Next, calculation of the nonlinear normal modes is considered. This needs the equivalent linear system at each response
amplitude level to be identified. The equivalent linear system was introduced in Eqs. (15–19). In the experimental section,
the FRFs near the first resonant point were presented at different response amplitude level a. Curve fitting these
experimental FRFs, the first natural frequency of corresponding linear system can be identified. In Table 2 the amplitude
dependent first natural frequencies are tabulated. There remains two parameters, i.e. kyðaÞ and kw, to be identified and then
the equivalent linear system at each response amplitude level will be known. The mode shapes of these equivalent linear
systems are different at different response amplitude levels. These amplitude dependent mode shapes are considered as
the nonlinear normal modes. kyðaÞ and kw are identified as is explained following.

Sensitivities of the natural frequencies with respect to ky and kw are shown in Table 3. The results presented in this table
are obtained by using the identified linear system characterized by the parameters given in Table 1. Table 3 shows that the
first natural frequency is not sensitive to kw. This means, changing kw does not affect the first natural frequency too much.
Therefore kw is kept constant and is considered to be equal to the value obtained for linear system (Table 1). There remains
the flexural stiffness, kyðaÞ, to be identified. This parameter is identified by solving the characteristic equation of linear



Table 2
1st natural frequencies and corresponding contact interface stiffness coefficients.

a, (m/s2) x1(a), (Hz) kh(a), (Nm/rad)

20 51.75 129.74

30 50.81 83.41

40 50.37 61.61

50 50.03 45.36

Table 3
Sensitivities of natural frequencies with respect to kw and ky.

@o2
n

@kw
kw

@o2
n

@ky
ky

First mode 0.84 1255.31

Second mode 29.00 46343.90

Third mode 226.40 91293.94
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Fig. 6. The generalized coordinated at a=50 m/s2.
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problem defined in Eqs. (15–19). The identified flexural stiffness coefficients at different response amplitude levels, i.e.
kyðaÞ, are also tabulated in Table 2. The results presented in Table 2 correspond to those response amplitude levels where
the micro-vibro-impacts develop.

The above discussion about kw being constant can be also verified in the following way. As it was stated earlier in this
section, kyðaÞ and kw are, respectively, the equivalent linear stiffness coefficients of slip and micro-vibro-impact
mechanisms. From Eqs. (11) and (20) it can be deduced that the equivalent linear stiffness of micro-vibro-impact
mechanism is constant.

Using the identified equivalent linear system at each response amplitude level, the nonlinear normal modes
oiðaÞ,

~f iðx,aÞ are obtained. In this paper it is assumed that only the first three normal modes contribute in the dynamic
response of the structure as we have employed only three accelerometers in the measurement setup. This assumption is
verified in this section by using experimental results. Writing Eq. (12) for each measured responses and employing the
nonlinear normal modes calculated in this section, the vector of generalized accelerations, i.e. €qðtÞ, is calculated. By
performing integration of this vector twice qðtÞ ¼ ½q1ðtÞ,q2ðtÞ,q3ðtÞ�

T is obtained. The harmonic nature of the response
signals makes analytical integration possible. Analytical integration is more reliable because it does not suffer from the
phased shift which is a problem in numerical integration. In Fig. 6 the generalized coordinates qðtÞ are shown at a=50 m/s2.
At this response amplitude level it is expected that the higher modes contribute in the response. Fig. 6 shows that only first
and second modes contribute in spanning the structural response and contribution of the third mode is negligible.
Therefore the assumption that the first three modes contribute in the dynamic response of the structure is valid. qðtÞ and
€qðtÞ are used in next section and the nonlinear contact interface is characterized.

5. Nonlinear contact interface characterization

This section considers characterization of the nonlinear contact interface modeled by nonlinear functions N(t) and R(t)
in Eqs. (1–5). In previous section the prerequisites for identification of N(t) and R(t) – i.e. qiðtÞ, €qiðtÞand oiðaÞ,

~fiðx,aÞ – were
calculated. The nonlinear normal modes were obtained by including torsional and lateral effects of virtual stiffness
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coefficients kyðaÞ and kw in the boundary. These effects need to be addressed in reduced order model by rearrangement of
Eq. (14) in the following form:

€qiðtÞþoi
2ðaÞqiðtÞ�FðtÞ ~f iðD,aÞ�kyðaÞ

~fuiðL,aÞ
Xn

r ¼ 1

qrðtÞ ~fui ðL,aÞ

 !
�kw

~f iðL,aÞ
Xn

r ¼ 1

qrðtÞ ~frðL,aÞ

 !

¼
Xn

r ¼ 1

qrðtÞ

Z L

0

~f
00

r ðx,aÞ ~f iðx,aÞdx�r ~fuiðL,aÞ

 !
NðtÞ� ~f iðL,aÞFnðtÞ, i¼ 1,2,. . .,n ð21Þ

where Fn(t)=R(t)�P.
In following the first generalized co-ordinate, i.e. i=1, is used and the nonlinear forces N(t) and R(t) are identified. Other

co-ordinates lead almost similar results. Also the measurement noise has considerable effects in their results. The LuGre
and Valanis models, described by Eqs. (7–10), are used for modeling the frictional force in contact interface. The capability
of these models in representing the experimental friction force is investigated in this paper. For modeling micro-vibro-
impacts the model proposed by Hunt and Crossley [21], Eq. (11), is used. The parameters of these models are identified as is
described following.

By considering a set of parameters for impact model, i.e. Eq. (11), and substituting w(L,t) and _wðL,tÞ – known from
experimental results – in this equation, R(t) can be obtained. Substituting R(t) in Eq. (21), N(t) is obtained. Using N(t) and
employing Eq. (6), u(t) is calculated and by performing differentiation in frequency domain _uðtÞ is also known. Having u(t)
and _uðtÞ , N(t) can be regenerated by using Valanis/LuGre model. The parameters of Eq. (11) are fine tuned in a way that the
best fit is achieved between N(t) that is regenerated by Valanis/LuGre model and the one obtained from experimental
results, i.e. by solving Eq. (21). Fig. 7 shows the identified impact force R(t), and its corresponding parameters are given in
Eq. (22)

RðtÞ ¼
ð0:83� 108

þ3:0� 1013 _dÞd, d40

ð3:6� 1010
þ2:4� 1014 _dÞd, do0

(
ð22Þ

where d¼wðL,tÞ.
Eq. (22) shows that the stiffness of the contact interface in normal direction is bilinear. The identified stiffness

coefficients for d40 and do0 are such that they satisfy Eq. (20).
The experimental friction force N(t) and the friction force regenerated by fitting the Valanis model, defined by Eq. (10),

are shown in Fig. 8. It is worth mentioning that although the external normal force P (see Fig. 1) applied at the boundary
condition is constant, the micro-vibro-impacts, developing at the contact interface, change the actual normal force and
hence the nature of the slip mechanism. Therefore different Valanis models are obtained at different response amplitude
levels. In Table 4 the parameters of Valanis model are tabulated.

In Fig. 9 the experimental friction force N(t) and the friction force regenerated by fitting a LuGre model, Eqs. (7–9), are
compared. In fitting the LuGre model the static and dynamic friction coefficients are considered as ms=0.74 and mc=0.57.
These values correspond to steel–steel contact condition. The remaining parameters of the LuGre model at different
response amplitude levels are shown in Table 5.

Results presented in Figs. 8 and 9 show that both Valanis and LuGre models are well able to represent the friction force
in a contact interface. The effect of the micro-vibro-impacts on frictional slip is investigated in Fig. 10. Fig. 10 shows that
when micro-vibro-impact is considered the hysteresis loop shows more symmetry and a better regeneration of the friction
force by Valanis model is obtained. In other words, micro-vibro-impact mechanism affects the frictional slip mechanism
when they simultaneously develop in a contact interface. The results shown in Fig. 10 correspond to response amplitude
level of a=50 m/s2.
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Table 4
Parameters of Valanis model, k=0.5.

a, (m/s2) e0, (MN/m) et, (MN/m) k, �105

20 12.8 4.5 1.6

30 9.8 2.3 1.7

40 8.5 1.0 1.6

50 7.8 0.15 1.61
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Fig. 9. Experimental (points) and regenerated (lines) friction force N(t), 20 m/s2 (&), 30 m/s2 (+), 40 m/s2 (J), 50 m/s2 (B): LuGre model.

Table 5
Parameters of LuGre model.

a, (m/s2) r0, (MN/m) r1, (Ns/m) r2, (Ns/m) vs, (mm/s)

20 11.6 0.03 0.011 4.3

30 7.8 0.05 0.013 3.5

40 6.2 0.08 0.015 3.0

50 5.4 0.11 0.02 2.5
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6. Conclusions

Identification of the nonlinear contact interface at the boundary condition of a clamped beam was considered. Small
deformations in normal and tangential directions at the contact interface – causing micro-vibro-impacts and frictional slip
– were considered and a mathematical model of the structure was developed by using Euler–Bernoulli beam theory. The
effects of the slip and micro-vibro-impact mechanisms were included in the mathematical model using nonlinear
functions. It was assumed that the slip mechanism is governed by Valanis/LuGre friction models. A model consisting of a
linear spring and a displacement dependent viscous damping [21] was considered for representing micro-vibro-impact
mechanism. The mathematical model of the structure was then analyzed considering that the response is spanned by
nonlinear normal modes. The analysis resulted in a reduced order model governing the dynamic response of the structure
near its first natural frequency. Experiments were performed on the real structure and the nonlinear FRFs were measured
using constant response amplitude approach. Using the FRFs it was shown that the material damping of the beam is
negligible. Therefore its effect was not considered in the mathematical model of the structure. In order to calculate the
nonlinear normal modes, the functions governing the slip and micro-vibro-impact mechanisms were replaced by
the corresponding equivalent linear stiffness of these mechanisms and an equivalent linear model was proposed for the
structure. Using the experimental FRFs, different equivalent linear systems were identified at different response amplitude
levels. The mode shapes of these equivalent linear systems, which are displacement dependent, were considered as
nonlinear normal modes. Using the calculated nonlinear normal modes at each response amplitude level and the time
domain signals measured in the experiments, the parameters of the models considered for slip and micro-vibro-impact
mechanisms were identified. The experimental hysteresis loops and those obtained by using identified models were in a
good agreement. This indicates that both Valanis and LuGre models are well able to represent the friction force in a contact
interface. Based on the results obtained, it was concluded that micro-vibro-impact mechanism affects the frictional slip
mechanism when they simultaneously develop in a contact interface.

Appendix

By substituting Eq. (12) into Eqs. (1–5) one may obtain

EI
Xn

i ¼ 1

qiðtÞ
~f
0000

i ðx,aÞ�NðtÞ
Xn

i ¼ 1

qiðtÞ
~f
00

i ðx,aÞþrA
Xn

i ¼ 1

€qiðtÞ
~fiðx,aÞ ¼ FðtÞdðx�DÞ ðA1Þ

Xn

i ¼ 1

qiðtÞ
~f ið0,aÞ ¼ 0,

Xn

i ¼ 1

qiðtÞ
~fuið0,aÞ ¼ 0, EI

Xn

i ¼ 1

qiðtÞ
~f
00

i ðL,aÞ ¼ z0NðtÞ ðA22A4Þ

EI
Xn

i ¼ 1

qiðtÞ
~f
000

i ðL,aÞ ¼ FnðtÞþm
Xn

i ¼ 1

€qiðtÞ
~fiðL,aÞ ðA5Þ
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Multiplying Eq. (A1) into ~fjðx,aÞ and integrating over the beam length, results in

EI
Xn

i ¼ 1

qiðtÞ

Z L

0

~f
0000

i ðx,aÞ ~fjðx,aÞ

 !
� NðtÞ

Xn

i ¼ 1

qiðtÞ

Z L

0

~f
00

i ðx,aÞ ~fjðx,aÞ

 !
þ rA

Xn

i ¼ 1

€qiðtÞ

Z L

0

~f iðx,aÞ ~fjðx,aÞ

 !
¼ FðtÞ ~fjðD,aÞ

ðA6Þ

Carrying out the double integration part by part to the first term of Eq. (A6) and using the boundary conditions of
Eqs. (A2–A5) results in the following equation:

Xn
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€qiðtÞ rA

Z L
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~f iðx,aÞ ~fjðx,aÞdxþm ~f iðL,aÞ ~fjðL,aÞ

� �
þqiðtÞ EI

Z L

0

~f
00
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Z L

0
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00
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NðtÞ� ~fjðL,aÞFnðtÞ ðA7Þ

By using the orthogonality condition, Eq. (A7) finally is simplified to Eq. (14). The used orthogonality conditions are
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Z L
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