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Two critical issues in model updating are deciding how a finite-element model should
be parametrized and estimating the unknown parameters from the resulting ill-
conditioned equations. A lack of understanding of these issues will lead to updated
models without physical meaning. This paper outlines the authors’ approach to
parametrization, using physical, geometric and generic element parameters. It also
applies useful methods of regularization, namely parameter constraints, the singular-
value decomposition, L-curves and cross-validation to model updating.
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1. Introduction

Finite-element model updating has become a viable approach to increase the cor-
relation between the dynamic response of a structure and the predictions from a
model. In model updating, parameters of the model are adjusted to reduce a penalty
function based on residuals between a measurement set and the corresponding model
predictions. Typical measurements include the modal model (natural frequencies and
mode shapes) and the frequency response functions. The choice of penalty function,
and also the optimization approach, has been the subject of much research and is well
covered by the authors’ survey paper (Mottershead & Friswell 1993), book (Friswell
& Mottershead 1995) and special issue of Mechanical Systems and Signal Processing
(Mottershead & Friswell 1998). This paper considers the issues of how to parametrize
a finite-element model and how to regularize the resulting estimation equations to
obtain a well-conditioned solution. These are critical issues in model updating.

2. Parametrization of the finite-element model

Parametrization is a key issue in finite-element model updating. It is important that
the chosen parameters should be able to clarify the ambiguity of the model, and
in that case it is necessary for the model output to be sensitive to the parameters.
Usually elements in the mass and stiffness matrices perform very poorly as candidate
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Figure 1. Modelling of the welded joint.

parameters, and this is one reason why the direct methods of model updating are
not favoured (Friswell & Mottershead 1995). One reason for this poor performance is
that the stiffness matrix element values are dominated by the high-frequency modes,
whereas the low-frequency modes are measured. Element parameters, such as the
flexural rigidity of a beam element, may be used provided there is some justification
as to why the element properties should be in error. Mottershead et al . (1996) used
geometric parameters, such as beam offsets, for the updating of mechanical joints
and boundary conditions. Gladwell & Ahmadian (1995) and Ahmadian et al . (1997a)
demonstrated the effectiveness of parametrizing the modes at the element level, and
used both geometric parameters and element-modal parameters (i.e. the so-called
generic element method) to update mechanical joints. The following subsections will
concentrate on the modelling of joints, since these are often the most difficult areas
of a structure to model.

(a) Physical and geometric parameters

There are a number of physical parameters of a joint that could be updated. A
beam with a flange welded as a T-joint, shown in figure 1, will be taken as an example.
The beam part was of length 0.4 m and cross-section 70 mm × 12 mm. The flange
area was 110 mm × 70 mm and the thickness of the flange was 6 mm. Pairs of bolt
holes, diameter 12 mm and 40 mm apart, were drilled 25 mm from the edge of the
longer part of the flange and 15 mm from the edge of the shorter part of the flange,
as shown in figure 1. Only vibration in a single plane was considered. The resonances
of the structure are lightly damped and well separated, making natural frequency
identification and mode shape pairing straightforward.
The beam structure was modelled with cubic beam elements for the transverse

motion and linear bar extension elements. The nodes possess axial and transverse
translation degrees of freedom together with a rotation in the same plane. The beam
was represented by eight elements, the flange was represented by five elements, and
nodes were located to coincide with the bolt holes. The shaded area is considered
rigid and is enforced by a constraint matrix linking nodes a, b and c. Only the degrees
of freedom corresponding to node c are independent and included in the model. The
mass and inertia of the rigid area were lumped at node c.
One approach to updating this joint is to alter the beam stiffness of the elements

closest to the joint. Although this often gives good results, the model error is not
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Table 1. Natural frequencies (Hz) for the welded joint in the beam

free–free clamped–free︷ ︸︸ ︷ ︷ ︸︸ ︷
measured 324 823 1243 1975 3022 3898 56 354 986 1523
initial 318 813 1212 1940 2976 3833 55 349 972 1504
updated 325 827 1235 1978 3023 3897 56 356 989 1525

Table 2. Updated parameters for the welded joint in the beam

thickness
α (mm) β (mm) change (%)

initial 6.0 3.0 —
updated 6.4 3.0 −3.2

localized at the joint, but is spread through the updated elements. Flexibility may
be introduced into the rigid area by using discrete translational and rotary springs
between nodes a, b and c. Mottershead et al . (1996) showed that for typical joints
the structure’s response is insensitive to the stiffness of these discrete springs, and
such insensitivity causes great problems for the updating algorithms. A powerful
alternative is to update geometric parameters, for example the offset of nodes b
and c from node a, denoted by α and β in figure 1. The offset parameters have
a physical meaning with regard to stiffness updating: the shaded (rigid) region in
figure 1 can be considered to expand or contract depending upon whether the offset
dimensions are extended or reduced by updating. The offset dimensions are assumed
to affect only the stiffness matrix; the mass matrix is unaffected. A third parameter,
the variation in the thickness of the beam and flange, was used to allow for a global
shift in all the modelled natural frequencies. The beam was tested twice: under free–
free conditions and clamped at the flanges. Updating was carried out using both
sets of natural frequency data, using a sensitivity-based approach (Mottershead et
al . 1996). Mode shape data were measured but only the natural frequencies were
used for updating. The mode shape data were used to check the pairing of the
experimental and analytical modes, although since the natural frequencies were well
separated (and the structure basically one dimensional), this task is straightforward.
The spatial incompleteness of the measured modes is not an issue here because the
number of parameters has been reduced using physical reasoning, resulting in an
overdetermined identification problem. Table 1 shows the measured, and initial and
updated analytical natural frequencies, and table 2 shows the initial and updated
parameter values. The natural frequencies are much improved after updating. The
beam thickness only changes by ca. 3%, which is within the measurement tolerance
for the beam thicknesses.

(b) Generic parameters

Gladwell & Ahmadian (1995) and Ahmadian et al . (1997b) introduced the generic
element approach. The method depends on the eigenvalue decomposition of stiffness
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and mass matrices at the element level, or substructure masses and stiffnesses typ-
ically at a joint. The joint would then be updated by adjusting a set of parameters
related to its own eigenvalues and eigenvectors. It would be possible, for example,
to update parameters related to the bending behaviour in a particular mode of a
joint while retaining the original stiffness of the other modes. Model correction using
submodel coefficients or physical parameters (such as Young’s modulus or the thick-
ness of a beam) can be restrictive and may lead to converged models whose physical
interpretation does not match the real structure. The generic element approach is
equivalent to modifying the coefficients in the element shape-function equations but
not the order of the shape functions. Generic elements are based on the element (or
substructure) free–free modes but other coordinate systems are possible of course,
and might have advantages for particular updating problems.
The mass matrix of a substructure, such as a joint, is assumed to be correct. The

substructure stiffness matrix may be decomposed as

Ks = V0Λ0V
T
0 , (2.1)

where Λ0 and V0 are the eigenvalues and unit normalized eigenvectors (mode shapes)
of the stiffness matrix. Assuming that the corrected eigenvectors are given by a
transformation,

V = V0R, (2.2)

where R is an orthogonal matrix, and letting the eigenvalues vary, gives the updated
substructure stiffness matrix as

Ksu = V0RΛRTV T
0 , (2.3)

or with three strain modes,

Ksu = V0


κ11 κ12 κ13

κ22 κ23
sym κ33


V T

0 . (2.4)

The six terms κ11, . . . , κ33 are available for updating. If only the diagonal terms—
κ11, κ22 and κ33—are changed, then this amounts to changing the natural frequencies
of the substructure strain modes while keeping the mode shapes unaltered. These
generic parameters have a meaning in terms of the interaction between the physical
modes, which is especially important if substructures are related through constraints.
However, note that the updated generic parameters cannot be interpreted in terms
of physical parameters of the substructure.
As an example, consider the out-of-plane vibration of the frame structure shown

in figure 2. Figure 3 shows the substructure types for the frame, namely a connecting
element and the L- and T-shaped joints. Although each of these substructures could
be updated using generic parameters, generic parameters relating to elements will
be updated here. Figure 3 also shows the five elements that will be used in the
updating. Each of the beam or bar elements has three rigid-body modes and three
strain modes. The strain modes have the form

V T
0 =


 0 β 0 0 −β 0
0 0 β 0 0 −β
2δ 0 −δ −2δ 0 −δ


 , (2.5)
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Figure 2. The frame structure: out-of-plane vibration is considered.
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Figure 3. Element types for the frame exampe: the numbers represent the element groups.

where β = 1/
√
2, δ = 1/(l

√
10) and l is the element length. The ordering of the

degrees of freedom in (2.5) will change with the orientation of the element if a global
coordinate system is used. Physically, (2.5) gives the modes in order of eigenvalue
magnitude, where the first mode is a bending mode that merely involves rotation
but no displacement at the nodes, the second is purely torsional, and the last is also
a bending mode but involves both rotation and displacement at the nodes. Thus the
first two modes are antisymmetric and the third mode is symmetric.
The number of parameters in the frame example is large. Just considering elements

adjacent to the joints gives 14 elements, each with 6 generic parameters. Updating
these 84 parameters produces ill-conditioned equations that require regularization.
Hence this example will be used later to demonstrate the regularization methods.

(c) Equivalent models

Occasionally part of the structure is so ill-defined that no finite-element model
can be constructed with confidence. Common examples are welded joints in frames
and in structures such as automobile bodies. The example considered here is the
rubber seal which provides the connection between a vehicle window and the car
body structure. The seal has a complicated cross-sectional shape into which the
window glass and the steel sheet are pressed to form the joint. Furthermore, it is
important to model the seal accurately because vibration of the window has a strong
influence on the acoustics of the passenger compartment. In such cases there seems
to be no reasonable alternative to direct parameter estimation.
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Figure 4. The rubber seal equivalent element.

The glass and the body panels are regularly modelled with plate elements having
3 degrees of freedom at each node. Thus, the equivalent rubber seal (ERS) element
should have the same degrees of freedom at each node. In its most general form,
the element is chosen to have 4 nodes and 12 degrees of freedom. The tests on
the seal were performed with a very stiff foundation that was assumed to be rigid
in the model. Although this is not the configuration in which the seal operates
in the vehicle, Ahmadian et al . (1997b) showed that by using the various physical
constraints and the symmetry of the element, the model of the seal may be derived
from measurements on the rigid foundation.
Figure 4 shows the seal model in the experimental configuration. Essentially there

are two unknown parameters, denoted kw and kα, that relate to a distributed bend-
ing and torsional stiffness per unit length. The stiffness matrix can be calculated
by ensuring that the displacement function within the seal matches the cubic dis-
placement function along the edge of the plate, and assuming that the torsional and
bending motions decouple. Based on the displacements (w1, ∆xβ1, w2, ∆xβ2), the
bending stiffness is

kw ∆x
420



156 −22 54 13

4 −13 −3
156 22

sym 4


 , (2.6)

where ∆x is the length of the seal element. This stiffness matrix has the same form as
the mass matrix of the standard Euler–Bernoulli beam element because the stiffness
is assumed to be distributed. Now use ∆y to represent the width of the plate element
associated with the seal element. Then based on the displacements (∆y α1,∆y α2),
the torsional stiffness is

kα ∆x
420

[
156 54
sym 156

]
. (2.7)

The glass used in the experiment was rectangular, which is not typical of a car
window, but the rubber seal was of the type used in modern vehicles. The seal was
mounted in a rigid frame. The glass plate (dimensions 0.5 m × 0.8 m × 0.0025 m) was
modelled with a mesh of 5 × 8 plate elements, which was sufficient to eliminate the
discretization error in the first 10 modes of vibration. The rubber seal was modelled
by using 26 elastic support elements. The parameters kw and kα were obtained by
minimizing the error between the measured natural frequencies and the finite-element
prediction; the results are given in table 3. The mode shapes were used to ensure the
correct pairing of the modes, but were not used in the identification. The greatest
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Table 3. Measured and identified natural frequencies (Hz) for the equivalent rubber seal

predicted predicted
mode measured 5 × 8 mesh 10 × 16 mesh

1 30.39 33.79 33.76
2 65.17 65.54 65.49
3 111.21 112.14 112.01
4 118.84 114.98 114.92
5 139.94 140.39 140.28
6 181.27 183.63 183.52
7 184.23 187.30 187.38
8 229.91 236.25 235.70
9 234.91 252.61 252.94

10 263.68 262.55 261.95

error occurs in the first natural frequency and has been attributed to the dynamics
of the experimental rig, which is supposed to provide a rigid boundary constraint
but behaves like a rigid-body mode at very low frequencies because of its large mass.
Almost identical results were obtained when the mesh was refined to 10 × 16, as
shown in table 3.
New measurements were obtained when the glass was replaced by a steel plate,

and these measurements were compared with predictions from the previously iden-
tified models, but with the plate elements given the properties of steel. The results
(table 4) indicate that the identified seal parameters have physical meaning, other-
wise the excellent agreement between the measured and predicted results is unlikely
to have been achieved. The agreement shows that the discretization error in the
rubber seal model has the same order or is smaller than the error in the plate ele-
ment.

3. Regularization

The treatment of ill-conditioned, noisy systems of equations is a problem central to
finite-element model updating; Ahmadian et al . (1998) gave further details. Such
equations often arise in the correction of finite-element models by using vibration
measurements. The regularization problem centres around the linear equation

Aθ = b, (3.1)

where θ is a vector of the m parameter changes we wish to determine, and b is
a vector of n residual quantities derived from the measured data and the current
estimate of the model. In model updating, the relationship between the measured
output (e.g. natural frequencies, mode shapes, or the frequency response function)
is generally nonlinear. In this case the problem is linearized using a Taylor series
expansion and iteration performed until convergence. When b is contaminated with
additive, independent random noise with zero mean, it is well known that the least-
squares solution, θLS, is unique and unbiased provided that rank(A) = m. When
A is close to being rank deficient, then small levels of noise may lead to a large
deviation in the estimated parameters from their exact values. The solution is said
to be unstable and (3.1) is ill-conditioned.
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Table 4. Measured and identified natural frequencies (Hz) for the equivalent rubber seal
with a steel plate

predicted predicted
mode measured 5 × 8 mesh 10 × 16 mesh

1 29.61 32.71 32.69
2 60.42 59.63 59.62
3 98.89 101.69 101.61
4 106.23 104.19 104.23
5 120.14 126.34 126.38
6 155.39 165.56 165.65
7 164.13 167.22 167.61
8 209.26 211.14 210.64
9 228.44 223.94 224.77

10 233.90 232.87 232.50

A different problem occurs when m > n, so that (3.1) is underdetermined and
there are an infinite number of solutions. The Moore–Penrose pseudo-inverse in the
form

θLS = AT[AAT]−1b (3.2)

provides the solution of minimum norm, as does singular-value decomposition (SVD).
For the case when rank(A) = r < min(m,n), the SVD will again result in the
minimum norm solution. This is a form of regularization which has been widely
applied in the model updating community. Unfortunately, minimum norm solutions
rarely lead to physically meaningful updated parameters.
One solution to the problem of ill-conditioning is to select only a subset of the

parameters for updating (Friswell et al . 1998). The parameters that are chosen are
those to which the response data are sensitive, but the parameters must also be able
to correct the errors in the model. This choice is generally determined by the process
of subset selection, whereby candidate subsets of parameters are tested and the
resulting response residual evaluated. For a given number of parameters, the subset
with the smallest residual is chosen. Clearly, the number of potential parameter
subsets grows rapidly and sub-optimal methods must be used for practical problems.

(a) Side constraints

Model updating often leads to an ill-conditioned parameter estimation problem,
and an effective form of regularization is to place constraints on the parameters.
One constraint could be that the deviation between the parameters of the updated
model and the initial model are minimized; another could be that differences between
parameters could be minimized. For example, in a frame structure a number of T-
joints may exist that are nominally identical. Due to manufacturing tolerances the
parameters of these joints will be slightly different, although these differences should
be small. Therefore, a side constraint is placed on the parameters, so that both the
residual and the differences between nominally identical parameters are minimized.
Thus if (3.1) generates the residual, the parameter is sought which minimizes the
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quadratic cost function

J(θ) = ‖Aθ − b‖2 + λ2‖Cθ − d‖2, (3.3)

for some matrix C, vector d and regularization parameter λ. The regularization
parameter is chosen to give a suitable balance between the residual and the side
constraint. For example, if there were only two parameters, which were nominally
equal, then

C = [1 − 1], d = {0}. (3.4)

Minimizing (3.3) is equivalent to minimizing the residual of[
A
λC

]
θ =

{
b
λd

}
. (3.5)

Equation (3.5) then replaces (3.1), although with the significant difference that (3.5)
is generally overdetermined, whereas (3.1) is often underdetermined. The constraints
should be chosen to satisfy Morozov’s complementation condition

rank
[
A
C

]
= m, (3.6)

which ensures the coefficient matrix in (3.5) is full rank.

(b) The singular-value decomposition

The SVD of A may be written in the form

A = UΣV T =
m∑

i=1

σiuiv
T
i , (3.7)

where U = [u1u2 . . .un] and V = [v1v2 . . .vm] are n × n and m × m orthogonal
matrices, and

Σ = diag(σ1, σ2, . . . , σm), (3.8)

where the singular values, σi, are arranged in descending order (σ1 � σ2 � · · · � σm).
In ill-posed problems, two commonly occurring characteristics of the singular values
have been observed: the singular values decay steadily to zero with no particular gap
in the spectrum; and the left and right singular vectors ui and vi tend to have more
sign changes in their elements as the index i increases.
The solution for the parameters using the SVD is

θ =
m∑

i=1

uT
i b

σi
vi. (3.9)

Thus the components of A corresponding to the low singular values have only a
small contribution to A but a large contribution to the estimated parameters. The
elements of these singular vectors (corresponding to the low singular values) are also
generally highly oscillatory. Equation (3.9) shows that the noise will be amplified
when σi < uT

i b, and this may be used to decide where to truncate the singular values.
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If A does not contain noise, then the singular values will decay to zero whereas the
uT

i b terms will decay to the noise level. Ahmadian et al . (1998) and Hemez & Farhat
(1995) consider this approach in more detail.
The standard SVD is incapable of taking account of the side constraint, as this

requires the generalized SVD. Space does not permit a full explanation of the gen-
eralized SVD, and the reader is referred to Hansen (1994) for more complete detail
of the decomposition. In equation (3.5), A and C are decomposed as

A = U

[
I 0
0 Σ

]
X−1, C = V

[
0 M

]
X−1, (3.10)

where X is a non-singular m×m matrix. U and V are n×m and p×p, respectively,
and their columns are orthogonal (but they are not related to the matrices U and
V of the standard SVD) and n � m � p. The matrices Σ and M are

Σ = diag(σ1, σ2, . . . , σp), M = diag(µ1, µ2, . . . , µp), (3.11)

where 1 � σ1 � σ2 � · · · � σp � 0 and 0 � µ1 � µ2 � · · · � µp � 1, and σi and µi

are normalized so that

σ2
i + µ2

i = 1. (3.12)

In decreasing order, the p generalized singular values of
[
A
C

]
are

γi =
σi

µi
. (3.13)

The solution to (3.5) can then be expressed as

θ =
p∑

i=1

γ2
i

γ2
i + λ2

uT
i b

σi
vi +

m∑
i=p+1

(uT
i b)vi. (3.14)

The regularization parameter, λ, has the effect of damping the effect of the lower
singular values (lower than about λ) and thus smoothing the solution. The expansion
in terms of the SVD (3.14) may also be used to specify a solution as a truncated
SVD. If, instead of specifying λ, the series is truncated by keeping only the largest
k singular values, then the solution is

θ =
k∑

i=1

uT
i b

σi
vi +

m∑
i=p+1

(uT
i b)vi. (3.15)

The choice of k will be considered in detail later, but one possibility is to apply
Picard’s condition and truncate the expansion when uT

i b/σi becomes large.

(c) L-curves

One way of obtaining the optimum value of the regularization parameter in the
presence of correlated noise is to define an upper bound for the side constraint and
minimize the residue,

min
θ

‖Aθ − b‖ subject to ‖Cθ − d‖ � γ, (3.16)
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or alternatively to set a limit for the residue and minimize the deviation from the
side constraint,

min
θ

‖Cθ − d‖ subject to ‖Aθ − b‖ � ε. (3.17)

Of course, the success of this approach is highly dependent on the physical insight of
the analyst in determining the allowable constraint violation or measurement error
(residue magnitude).
A different approach is to plot the norm of the side constraint, ‖Cθ− d‖, against

the norm of the residue, ‖Aθ − b‖, obtained by minimizing the penalty function
(3.3) for different values of λ. Hansen (1992) showed that the norm of the side
constraint is a monotonically decreasing function of the norm of the residue, and any
point (ε, γ) on the curve is a solution to the two constrained least-squares problems
(3.16) and (3.17). He pointed out that for a reasonable signal-to-noise ratio and
satisfaction of the Picard condition, the curve is approximately vertical for λ <
λopt, and soon becomes a horizontal line when λ > λopt, with a corner near the
optimal regularization parameter λopt. The curve is called the L-curve because of
this behaviour. The optimum value of the regularization parameter λopt corresponds
to the point with maximum curvature at the corner of the log-log plot of the L-
curve. This point represents a balance between confidence in the measurements and
the analyst’s intuition.

(d) Cross-validation

The idea of cross-validation is to maximize the predictability of the model by
choice of the regularization parameter λ. A predictability test can be arranged by
omitting one data point, bk, at a time and determining the best parameter estimate
using the other data points, by minimizing (3.3). Then for each of the estimates,
predict the missing data and find the value of λ that on average predicts the bk best,
in the sense of minimizing the cross-validation function

V0(λ) =
1
n

n∑
k=1

(bk − b̃k(λ))2, (3.18)

where b̃k(λ) is the estimate of bk obtained from the remaining data. This is the
method of cross-validation. According to Ahmadian et al . (1998), equation (3.18) is
equivalent to

V0(λ) =
1
n

‖[diag(I − R(λ))]−1[Aθ(λ) − b]‖2, (3.19)

where

R(λ) = A[ATA + λ2CTC]−1AT, (3.20)

and diag denotes the matrix with zeros assigned to the off-diagonal terms. Ordinary
cross-validation has a rotational invariant version called generalized cross-validation
(GCV); this is essentially a weighted version of (3.19) and is given by

V (λ) =
n‖[Aθ(λ) − b]‖2

(trace[I − R(λ)])2
. (3.21)
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Table 5. Natural frequencies (Hz) for the frame example

mode measured initial updated

1 226.8 269.5 221.5
2 275.2 287.7 270.9
3 537.4 615.0 537.0
4 861.5 928.7 861.7
5 974.8 1071.3 974.1

Ahmadian et al . (1998) give the background and further details. Equation (3.21) may
be conveniently computed via the generalized SVD. Furthermore, the GCV based on
the solution from the truncated generalized SVD may be defined as

V (k) =
n‖[Aθ(k) − b]‖2

(n−m+ p− k)2
, (3.22)

where k is the number of retained singular values and θ(k) is the corresponding
solution.

(e) An example of regularization

The regularization methods were tested on the frame shown in figure 2. The frame
was made from 25.4 mm square section aluminium tubing with 2.38 mm wall thick-
ness. The frame was 584 mm long and 279 mm wide, and it contained four L-shaped
welded joints and two T-joints that are difficult to model. Experimental data were
obtained using standard hammer impact testing procedures on the freely suspended
frame. The natural frequencies for the first 5 out-of-plane bending modes were iden-
tified, together with the corresponding mode shapes at the 13 locations shown in
figure 2. Table 5 lists the measured natural frequencies. The structure was lightly
damped and the real mode shapes were easily extracted.
A finite-element model was constructed to model the out-of-plane bending vibra-

tion of the frame. Each short beam was split into 4 elements and the longer beams
split into 8 elements, giving a total of 28 beam or bar elements. Each of the 27
nodes had 3 degrees of freedom, producing a finite-element model with 81 degrees
of freedom. The beam parts of the elements were Euler–Bernoulli beams, and the
torsional contribution to the dynamics was also modelled. Table 5 lists the first five
natural frequencies obtained from this model, and table 6 gives the modal assurance
criterion (MAC) matrix. Although there is some error in the natural frequencies, the
mode shape correlation is very good. It is also clear that the modes pair in natural
frequency order. The measured modes were expanded using dynamic expansion to
the full set of degrees of freedom of the finite-element model.
The model of the frame was updated using generic parameters, described earlier.

The elements were split into five types shown in figure 3; namely, connecting elements,
two types relating to each side of the L-joint, and two elements of the T-joints. Each
element group has an associated set of 6 parameters per element, giving a total of
168 parameters in 30 groups. The values within two of the parameter groups are
not changed, since these parameters would make the stiffness matrices of connecting
elements different if the elements were rotated by 180◦. Many models of the structure
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Table 6. The MAC matrix for the frame example

experimental mode number
1 2 3 4 5

1 99.4 17.3 4.0 2.6 0.5
analytical 2 9.2 98.3 3.5 1.0 2.8

mode 3 0.0 0.1 99.5 4.3 1.4
number 4 2.7 1.7 1.1 99.7 2.7

5 1.1 2.6 0.3 2.6 99.8

may be created, and the model we are using is not necessarily optimum; nevertheless,
it will demonstrate the methods outlined in this paper. There are several ways of
specifying the constraint that parameters corresponding to the equivalent generic
parameter for elements within the same group should be approximately equal. We
will focus on constraining three parameters to be approximately equal, requiring
two independent constraints, as this is the smallest number that can be used for
demonstration purposes. The following three examples of constraint matrix C all
have the property that the constraint is exactly satisfied when all three parameters
are equal:

C =
[
1 −1 0
0 1 −1

]
, C =

[
2 −1 −1

−1 2 −1

]
, C =


 1 −1 0
0 1 −1

−1 0 1


 . (3.23)

Indeed there are many more candidate constraint matrices as each of the above may
be premultiplied by any non-singular matrix. Unfortunately, each of these choices of
constraint matrix has a slightly different effect within the identification procedure,
as the parameters are weighted slightly differently in the cost function (3.3). The
third example has the advantage of symmetry in the effect on the parameters, but is
not full rank. In terms of the penalty function, this constraint matrix (where d = 0)
minimizes the sum of the square differences between every pair of parameters. With
mg parameters within a group, there will be mg(mg − 1)/2 pairs of parameters,
producing this number of rows in the constraint matrix. However, the matrix will
still have rank mg − 1. The equivalent full-rank constraint matrix may be computed
easily via the SVD

CTC = UΣUT, (3.24)

where Σ only contains the mg − 1 non-zero singular values, and U contains the
corresponding singular vectors. The new full-rank constraint matrix is then

Ĉ = Σ1/2UT. (3.25)

This constraint matrix is used in the updating of the frame.
The residual minimized in this example is given by

J(θ) =
nmode∑
i=1

‖[−ω2
i M + K(θ)]φi‖2 +W 2

orthog|φT
i K(θ)φi − ω2

i |2, (3.26)
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Figure 5. The L-curve for the frame example.

where ωi and φi are the ith measured natural frequency and expanded mode shape
(normalized with respect to the analytical mass matrix), nmode is the number of
modes measured, and only the stiffness matrix is a function of the vector of generic
parameters θ. The first term minimizes the error in the eigenvalue equation.Worthog is
a weighting factor for the error in the stiffness orthogonality, and essentially weights
the natural frequency error. In this example there are 405 equations (81 degrees
of freedom for 5 modes) from the error in the eigenvalue equation, and a further
5 equations from the stiffness orthogonality. Thus n = 410 and m = 140. The
orthogonality weighting factor Worthog and the regulation parameter λ may both
be changed, and the norms of the residual and constraint may be plotted to give a
surface rather than the standard L-curve. For this example, L-curves were plotted
for different values of Worthog and engineering judgement was used to assess when
the natural frequencies were given sufficient weight.
Figure 5 shows the L-curve as the regularization parameter λ is changed. There is

a corner at a value of λ of approximately 3×105. Using the truncated SVD approach
gives a similar L-curve (figure 6), and it shows that approximately 30 singular values
should be retained. Using the generalized cross-validation function gives a defined
minimum at 2.8 × 105 (figure 7), which is close to the value given by the L-curve.
The updated natural frequencies based on this value for the regularization parameter
(2.8 × 105) are shown in table 5. The MAC values for the updated model are not
shown, as they are very similar to those of the initial model in table 6. Since the modes
correlate well, even for the initial mode, it is not surprising that the MAC values
do not improve. Finally, figure 8 shows the generalized cross-validation based on the
truncated SVD, having a minimum at 44 singular values, although this minimum is
not particularly marked.

4. Future developments

A major obstacle to obtaining updated models with physically meaningful param-
eters is that the structure of the a priori finite-element may not be correct. Model
structure errors typically include the omission of important physical relationships,
erroneous modelling of boundary conditions, mismodelling of joints, a nonlinear
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Figure 6. The L-curve for the frame example based on the truncated SVD.
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Figure 7. The generalized cross-validation function for the frame example.

structure assumed to be linear, and wrongly connected elements. This area of research
now appears to be open for development, and new work close to ‘model structure
determination’ includes methods of finite-element disassembly, the determination of
finite-element connectivities, and inverse problems for chain-like finite-element struc-
tures.
Updating methods often rely on objective functions that are nonlinear in the

unknown parameters. For example, the frequency response function sensitivities from
a model which is condensed by using the so-called exact dynamic reduction will
be unstable at frequencies close to the natural frequencies of the slave system with
grounded masters. The penalty function based on the frequency domain output error
constitutes a particularly difficult optimization problem with many local minima. A
number of techniques including genetic algorithms, simulated annealing, neural net-
works and interval algorithms are becoming available to deal with these difficult
optimization problems.
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Figure 8. The generalized cross-validation function for the frame example
based on the truncated SVD.

One way of reducing the number of updating parameters is to apply excitations
which produce strong sensitivities to a subset of the parameters while causing the sen-
sitivities to other parameters to vanish. The method of selective sensitivity requires
the response predictions to a relatively large and possibly complex system of excita-
tion forces (Ben-Haim 1994). The aim is to adapt the load system so that the output
is sensitive to a selected set of parameters and insensitive to others. This is often
possible because the substructure matrices have small rank and are very sparse. The
physical difficulty of applying the required system of forces poses a serious problem to
practical application, and further research is needed. Smart structures, with a large
number of actuators distributed on a structure, may hold the key to applications of
this technology.
Model updating has been a research topic for many years, but it has only recently

been applied to large industrial problems. This may be due in part to some reluctance
from finite-element analysts to changing the parameters in their models, because the
changes seem to be very complex and comprehensive. This is perhaps the reason
why the available commercial software has been written by vendors interested in
the measurement of the vibration response, rather than the vendors of finite-element
analysis software, even though the most sensible place for the updating software is
within a finite-element package. There is a considerable computational burden associ-
ated with updating methods. Iterative schemes based on modal residuals will require
the evaluation of the eigensolution for the structure many times. For a finite-element
model with a large number of degrees of freedom this is not an insignificant task,
although it is becoming less expensive on modern computer hardware. Industrial-
scale updating problems have recently been solved and case studies performed. Typ-
ical examples include the recently completed BRITE project UPDYN (Irrgang 1997;
Loureiro 1997).
The effect of uncertainty within a model, and how this uncertainty propagates

through the model, is a topic that is just beginning to be addressed in the model
updating and structural dynamics communities. For example, consider a structure
that is manufactured to certain tolerances. If a prototype structure is tested, then the
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model may predict the response for some set of parameters within the manufacturing
tolerances. How should a model be validated in these circumstances? Propagating
uncertainty does require huge computing resources that have only recently become
affordable. However, this area will undoubtedly see an explosion of interest in the
coming years.
It is difficult to determine the topics in model updating that will be active research

areas in the future. Certainly more work is needed to determine the best way to
parametrize a structure, with updating in mind. Alongside this parametrization,
there will be continued improvement in methods of error localization and regular-
ization (including the determination of weighting matrices) to cope with the ill-
conditioning inherent in most updating methods. Powerful optimization methods
will be applied to obtain the global minimum of nonlinear penalty functions. The
methods will also be applied to many more industrial case studies.

5. Conclusion

This paper has outlined the authors’ philosophy in dealing with two of the major
issues in model updating, namely how to parametrize a structure and how to reg-
ularize the equations required to estimate the parameter values. Parameters should
be chosen which have physical meaning but which are also able to model the errors
in the finite-element model. Geometric parameters, generic elements and equivalent
models were shown to have good features for model updating. Regularization based
on physical considerations leads to updated models with physical meaning. Placing
constraints on the parameters, such as minimizing the difference between nominally
identical parameters, works very well. One difficulty with this approach is deter-
mining the relative weight given to the constraints, and this paper has proposed a
number of approaches to determine this regularization parameter. A number of phys-
ical examples using experimental data have been described to show the effectiveness
of the proposed approaches.

M.I.F. gratefully acknowledges the support of the EPSRC through the award of an advanced
fellowship.

References

Ahmadian, H., Gladwell, G. M. L. & Ismail, F. 1997a Parameter selection strategies in finite
element model updating. J. Vib. Acoust. 119, 37–45.

Ahmadian, H., Mottershead, J. E. & Friswell, M. I. 1997b Parameterisation and identification
of a rubber seal. In Proc. 15th Int. Modal Analysis Conf., Orlando, FL, pp. 142–146.

Ahmadian, H., Mottershead, J. E. & Friswell, M. I. 1998 Regularisation methods for finite
element model updating. Mech. Syst. Signal Process. 12, 47–64.

Ben-Haim, Y. 1994 Model updating of linear systems by selective sensitivity with deliberate
structural modification. Modal Analysis 9, 287–301.

Friswell, M. I. & Mottershead, J. E. 1995 Finite element model updating in structural dynamics.
Dordrecht: Kluwer.

Friswell, M. I., Mottershead, J. E. & Ahmadian, H. 1998 Combining subset selection and param-
eter constraints in model updating. J. Vib. Acoust. 120, 854–859.

Gladwell, G. M. L. & Ahmadian, H. 1995 Generic element matrices suitable for finite element
model updating. Mech. Syst. Signal Process. 9, 601–614.

Phil. Trans. R. Soc. Lond. A (2001)

 on February 16, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


186 M. I. Friswell, J. E. Mottershead and H. Ahmadian

Hansen, P. C. 1992 Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev.
34, 561–580.

Hansen, P. C. 1994, Regularisation tools: a Matlab package for analysis and solution of discrete
ill-posed problems. Numer. Algorithms 6, 1–35.

Hemez, F. M. & Farhat, C. 1995 Bypassing the numerical difficulties associated with the updat-
ing of finite element matrices. AIAA Jl 33, 539–546.

Irrgang, A. (ed.) 1997 BRITE project UPDYN (P7666), task 7 final report, industrial tests:
automotive.

Loureiro, R. (ed.) 1997 BRITE project UPDYN (P7666), task 8 final report, industrial tests:
railway vehicle.

Mottershead, J. E. & Friswell, M. I. 1993 Model updating in structural dynamics: a survey. J.
Sound Vib. 162, 347–375.

Mottershead, J. E. & Friswell, M. I. (eds) 1998 Model updating. Mech. Syst. Signal Process.
12(1).

Mottershead, J. E., Friswell, M. I., Ng, G. H. T. & Brandon, J. A. 1996 Geometric parameters
for finite element model updating of joints and constraints. Mech. Syst. Signal Process. 10,
171–182.

Phil. Trans. R. Soc. Lond. A (2001)

 on February 16, 2012rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/

